EDP Sciences logo
Open Access
Numéro
Cah. Myol.
Numéro 17, Juin 2018
Page(s) 11 - 14
Section Physiologie / Physiology
DOI https://doi.org/10.1051/myolog/201817003
Publié en ligne 6 juin 2018
  1. Mauro A. Satellite cell of skeletal muscle fibers. J Biophys Bio- chem Cytol. 1961 ; 9 : 493–5. [Google Scholar]
  2. Yoshida N, Yoshida S, Koishi K, et al. Cell heterogeneity upon myogenic differentiation: down-regulation of MyoD and Myf-5 generates reserve cells. J Cell Sci 1998; 111: 769–79. [PubMed] [Google Scholar]
  3. Friday BB, Pavlath GK. A calcineurin- and NFAT-depen- dent pathway regulates Myf5 gene expression in skeletal muscle reserve cells. J Ceff Sci 2001; 114: 303–10. [Google Scholar]
  4. Seale P, Sabourin LA, Girgis-Gabardo A. etal. Pax7 is required for the specification of myogenic satellite cells. Cell 2000; 102 : 777–86. [CrossRef] [PubMed] [Google Scholar]
  5. Zammit PS, Golding JP, Nagata Y, et al. Muscle satellite cells adopt divergent fates: a mechanism for self-renewal? J Cell Biol 2004; 166 : 347–57. [CrossRef] [PubMed] [Google Scholar]
  6. Collins CA, Olsen I, Zammit PS, et al. Stem cell function, selfrenewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. cell 2005; 122: 289–301. [Google Scholar]
  7. Lepper C, Partridge TA, Fan CM. An absolute requirement for Pax7-positive satellite cells in acute injury-induced skeletal muscle regeneration. Development 2011; 138: 3639–46. [CrossRef] [PubMed] [Google Scholar]
  8. Murphy MM, Lawson JA, Mathew SJ, et al. Satellite cells, connective tissue fibroblasts and their interactions are crucial for muscle regeneration. Development 2011; 138: 3625–37. [CrossRef] [PubMed] [Google Scholar]
  9. Sambasivan R, Yao R, Kissenpfennig A, etal. Pax7-expressing satellite cells are indispensable for adult skeletal muscle regeneration. Development 2011; 138: 3647–56. [CrossRef] [PubMed] [Google Scholar]
  10. Kuang S, Kuroda K, Le Grand F, Rudnicki MA. Asymmetric self-renewal and commitment of satellite stem cells in muscle. cell 2007; 129: 999–1010. [CrossRef] [PubMed] [Google Scholar]
  11. Rocheteau P, Gayraud-Morel B, Siegl-Cachedenier I, et al. A subpopulation of adult skeletal muscle stem cells retains all template DNA strands after cell division. cell 2012; 148: 112–25. [CrossRef] [PubMed] [Google Scholar]
  12. Garcia-Prat L, Martinez-Vicente M, Perdiguero E, et al. Autophagy maintains stemness by preventing senescence. Nature 2016; 529 : 37–42. [CrossRef] [PubMed] [Google Scholar]
  13. Rouger K, Larcher T, Dubreil L, etal. Systemic delivery of allogenic muscle stem cells induces long-term muscle repair and clinical efficacy in Duchenne muscular dystrophy dogs. Am J Pathol 2011; 179: 2501–18. [CrossRef] [PubMed] [Google Scholar]
  14. Cossu G, Previtali SC, Napolitano S, et al. Intra-arterial transplantation of HLA-matched donor mesoangioblasts in Duchenne muscular dystrophy. EMBO Mol Med 2015; 7: 1513–28. [CrossRef] [PubMed] [Google Scholar]
  15. Dumont NA, Wang YX, von Maltzahn J, et al. Dystrophin expression in muscle stem cells regulates their polarity and asymmetric division. Nat Med 2015; 21: 1455–63. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.