EDP Sciences logo
Open Access
Cah. Myol.
Numéro 13, Juin 2016
Page(s) 34 - 67
Section Mise au point / Review
DOI https://doi.org/10.1051/myolog/201613009
Publié en ligne 11 juillet 2016
  1. Ai T, Yu K, Gao L, et al. Diffusion tensor imaging in evaluation of thigh muscles in patients with polymyositis and dermatomyositis. Br J Radiol; 2014 ; 87 (1043) : 20140261. [CrossRef] [Google Scholar]
  2. Alexander, Matthew S, Kunkel, et al. Skeletal Muscle MicroRNAs: Their diagnostic and therapeutic potential in human muscle disease. J Neuromuscul Dis 2015 ; 2 : 1–11. [CrossRef] [PubMed] [Google Scholar]
  3. Alizai H, Nardo L, Karampinos DC, et al. Comparison of clinical semi-quantitative assessment of muscle fat infiltration with quantitative assessment using chemical shift-based water/fat separation in MR studies of the calf of post-menopausal women. Eur Radiol 2012 ; 22 : 1592–1600. [CrossRef] [PubMed] [Google Scholar]
  4. Amthor H, Egelhof T, McKinnell I, et al. Albumin targeting of damaged muscle fibres in the mdx mouse can be monitored by MRI. Neuromuscul Disord 2004 ; 14 : 791–796. [CrossRef] [PubMed] [Google Scholar]
  5. Andreisek G, White LM, Sussman MS, et al. T2*-weighted and arterial spin labeling MRI of calf muscles in healthy volunteers and patients with chronic exertional compartment syndrome: preliminary experience. Am J Roentgenol 2009 ; 193 : 327–333. [CrossRef] [Google Scholar]
  6. Araujo ECA, Fromes Y, Carlier PG. New Insights on Human Skeletal Muscle Tissue Compartments Revealed by In Vivo T2 NMR Relaxometry. Biophys J 2014 ; 106 : 2267–2274. [CrossRef] [PubMed] [Google Scholar]
  7. Arechavala-Gomeza V, Anthony K, Morgan J, Muntoni F. Anti-sense oligonucleotide-mediated exon skipping for Duchenne muscular dystrophy: progress and challenges. Curr Gene Ther 2012 ; 12: 152–260. [CrossRef] [PubMed] [Google Scholar]
  8. Argov Z, Lôfberg M, Arnold DL. Insights into muscle diseases gained by phosphorus magnetic resonance spectroscopy. Muscle Nerve 2000 ; 23 : 1316–1334. [CrossRef] [PubMed] [Google Scholar]
  9. Arpan I, Forbes SC, Lott DJ, et al. T2 mapping provides multiple approaches for the characterization of muscle involvement in neuromuscular diseases: a cross-sectional study of lower leg muscles in 5–15-year-old boys with Duchenne muscular dystrophy. NMR Biomed 2013 ; 26 : 320–328. [CrossRef] [PubMed] [Google Scholar]
  10. Arpan I, Willcocks RJ, Forbes SC, et al. Examination of effects of corticosteroids on skeletal muscles of boys with DMD using MRI and MRS. Neurology 2014 ; 83 : 974–980. [CrossRef] [PubMed] [Google Scholar]
  11. Aschwanden M, Partovi S, Jacobi B, et al. Assessing the endorgan in peripheral arterial occlusive disease-from contrastenhanced ultrasound to blood-oxygen-level-dependent MR imaging. Cardiovasc Diagn Ther 2014 ; 4 : 165–172. [PubMed] [Google Scholar]
  12. Azzabou N. Carlier PG Fat quantification and T2 measurement. Pediatr Radiol 2014 ; 44 : 1620–1621. [CrossRef] [PubMed] [Google Scholar]
  13. Azzabou N, Hogrel J-Y, Carlier PG.. NMR based biomarkers to study age-related changes in the human quadriceps. Exp Gerontol 2015 ; 70 : 54–60. [CrossRef] [PubMed] [Google Scholar]
  14. Azzabou N, Loureiro de Sousa P, Caldas E, Carlier PG. Validation of a generic approach to muscle water T2 determination at 3T in fat-infiltrated skeletal muscle. JMagn Reson Imaging 2015 ; 41 : 645–653. [CrossRef] [Google Scholar]
  15. Azzabou N, de Sousa PL, Caldas E, Carlier PG. Validation of a generic approach to muscle water T2 determination at 3T in fat-infiltrated skeletal muscle. J Magn Reson Imaging 2015c ; 41 : 645–653. [Google Scholar]
  16. Baligand C, Wary C, Ménard JC, et al. Measuring perfusion and bioenergetics simultaneously in mouse skeletal muscle: a multiparametric functional-NMR approach. NMR Biomed 2011 ; 24 : 281–290. [CrossRef] [PubMed] [Google Scholar]
  17. Barbiroli B, Funicello R, Ferlini A, et al. Muscle energy metabolism in female DMD/BMD carriers: a 31P-MR spectroscopy study. Muscle Nerve 1992a ; 15 : 344–348. [CrossRef] [Google Scholar]
  18. Barbiroli B, Funicello R, Iotti S, et al. 31P-NMR spectroscopy of skeletal muscle in Becker dystrophy and DMD/BMD carriers. Altered rate of phosphate transport. J Neurol Sci 1992b ; 109 : 188–195. [CrossRef] [Google Scholar]
  19. Barnouin Y, Butler-Browne G, Voit T, et al. Manual segmentation of individual muscles of the quadriceps femoris using MRI: a reappraisal. J Magn Reson Imaging 2014 ; 40 : 239–247. [CrossRef] [PubMed] [Google Scholar]
  20. Bertoldi D, Parzy E, Fromes Y, et al. New insight into abnormal muscle vasodilatory responses in aged hypertensive rats by in vivo nuclear magnetic resonance imaging of perfusion. J Vasc Res 2006 ; 43 : 149–156. [CrossRef] [PubMed] [Google Scholar]
  21. Bertoldi D, Loureiro de Sousa P, Fromes Y, et al. Quantitative, dynamic and non-invasive determination of skeletal muscle perfusion in mouse leg by NMR arterial spin-labeled imaging. Magn Reson Imaging 2008 ; 26 : 1259–1265. [CrossRef] [PubMed] [Google Scholar]
  22. Bieri O, Scheffler K, Welsch GH, et al. Quantitative mapping of T2 using partial spoiling. Magn Reson Med 2011 ; 66 : 410–418. [CrossRef] [PubMed] [Google Scholar]
  23. Blat Y, Blat S. Drug Discovery of Therapies for Duchenne Muscular Dystrophy. J Biomol Screen 2015 ; 10 : 1189–1203. Epub 2015 May 14. [CrossRef] [Google Scholar]
  24. Bley TA, Wieben O, François CJ, et al. Fat and water magnetic resonance imaging. J Magn Reson Imaging 2010 ; 31 : 4–18. Boesch C. Musculoskeletal spectroscopy. J Magn Reson Imaging 2006 ; 25 : 321–338. [Google Scholar]
  25. Bonati U, Hafner P, Schädelin S, et al. Quantitative muscle MRI: A powerful surrogate outcome measure in Duchenne muscular dystrophy. Neuromuscul Disord 2015a ; 25 : 679–85. [CrossRef] [Google Scholar]
  26. Bonati U, Schmid M, Hafner P, et al. Longitudinal 2-point dixon muscle magnetic resonance imaging in becker muscular dystrophy. Muscle Nerve 2015 ; 51 : 918–921. [CrossRef] [PubMed] [Google Scholar]
  27. Brillault-Salvat C, Giacomini E, Jouvensal L, et al. Simultaneous determination of muscle perfusion and oxygenation by interleaved NMR plethysmography and deoxymyoglobin spectroscopy. NMR Biomed 1997 ; 10 : 315–323. [CrossRef] [PubMed] [Google Scholar]
  28. Brown AM, Nagala S, McLean MA, et al. Multi-institutional validation of a novel textural analysis tool for preoperative stratification of suspected thyroid tumors on diffusion-weighted MRI. Magn Reson Med 2015 ; doi: 10.1002/mrm.25743 [Google Scholar]
  29. Bryan WW, Reisch JS, McDonald G, et al. Magnetic resonance imaging of muscle in amyotrophic lateral sclerosis. Neurology 1998 ; 51 : 110–3. [CrossRef] [PubMed] [Google Scholar]
  30. Bryant ND, Li K, Does MD, et al. Multi-parametric MRI characterization of inflammation in murine skeletal muscle. NMR Biomed 2014 ; 27 : 716–725. [CrossRef] [PubMed] [Google Scholar]
  31. Bushby K, Finkel R, Wong B, et al. Ataluren treatment of patients with nonsense mutation dystrophinopathy. Muscle Nerve 2014 ; 50 : 477–487. [CrossRef] [PubMed] [Google Scholar]
  32. Buyse GM, Voit T, Schara U, et al. Efficacy of idebenone on respiratory function in patients with Duchenne muscular dystrophy not using glucocorticoids (DELOS): a double-blind randomised placebo-controlled phase 3 trial. Lancet 2015 ; 385 : 1748–57. [CrossRef] [PubMed] [Google Scholar]
  33. de Caldas A. Araujo E, Azzabou N, Vignaud A, et al. Quantitative NMR imaging of the short-T2 components in the SKM tissue: alterations observed in myopathic patients. In: ISMRM 23rd Annual Meeting & Exhibition. Toronto, Ontario, Canada, 2015 ; p. 251. [Google Scholar]
  34. Caravan P, Das B, Dumas S, et al. Collagen-targeted MRI contrast agent for molecular imaging of fibrosis. Angew Chem Int Ed Engl 2007 ; 46 : 8171–3. [CrossRef] [PubMed] [Google Scholar]
  35. Caravan P, Yang Y, Zachariah R, et al. Molecular magnetic resonance imaging of pulmonary fibrosis in mice. Am J Respir Cell Mol Biol 2013 ; 49 : 1120–1126. [CrossRef] [PubMed] [Google Scholar]
  36. Carlier PG. Global T2 versus water T2 in NMR imaging of fatty infiltrated muscles: different methodology, different information and different implications. Neuromuscul Disord 2014 ; 24 : 390–392. [CrossRef] [PubMed] [Google Scholar]
  37. Carlier PG, Azzabou N, de Sousa PL, et al. P.14.4 Diagnostic role of quantitative NMR imaging exemplified by 3 cases of juvenile dermatomyositis. Neuromuscul Disord 2013 ; 23 : 814. [CrossRef] [Google Scholar]
  38. Carlier PG, Azzabou N, de Sousa PL, et al. Skeletal muscle quantitative nuclear magnetic resonance imaging follow-up of adult Pompe patients. J Inherit Metab Dis 2015 ; 38 : 565–572. [CrossRef] [PubMed] [Google Scholar]
  39. Carlier PG, Bertoldi D, Baligand C, et al. Muscle blood flow and oxygenation measured by NMR. NMR Biomed 2006 ; 19 : 954–967. [CrossRef] [PubMed] [Google Scholar]
  40. Carlier PG, Brillault-Salvat C, Giacomini E, et al. How to investigate oxygen supply, uptake, and utilization simultaneously by inter-leaved NMR imaging and spectroscopy of the skeletal muscle. Magn Reson Med 2005 ; 54 : 1010–1013. [CrossRef] [PubMed] [Google Scholar]
  41. Carlier PG, Shukelovich A, Baudin PY, et al. Fast, precise, interactive segmentation of skeletal muscle NMR images. Neuromuscul Disord 2014 ; 24 : 836–837. [CrossRef] [Google Scholar]
  42. De Certaines JD, Larcher T, Duda D, et al. Application of texture analysis to muscle MRI: 1-What kind of information should be expected from texture analysis? EPJ Nonlinear Biomed Phys 2005 ; 1–3 : 1–14. [Google Scholar]
  43. Chance B, Younkin DP, Kelley R, et al. Magnetic resonance spectroscopy of normal and diseased muscles. Am J Med Genet 1986 ; 25 : 659–679. [CrossRef] [PubMed] [Google Scholar]
  44. Cirak S, Arechavala-Gomeza V, Guglieri M, et al. Exon skipping and dystrophin restoration in patients with Duchenne muscular dystrophy after systemic phosphorodiamidate morpholino oligomer treatment: an open-label, phase 2, dose-escalation study. Lancet 2011 ; 378 : 595–605. [CrossRef] [PubMed] [Google Scholar]
  45. Csapo R, Malis V, Sinha U, et al. Age-associated differences in triceps surae muscle composition and strength - an MRI-based cross-sectional comparison of contractile, adipose and connective tissue. BMC Musculoskelet Disord 2014 ; 15 : 209 Epub 2014 Jun 17. [CrossRef] [PubMed] [Google Scholar]
  46. Damon BM, Heemskerk AM, Ding Z. Polynomial fitting of DT-MRI fiber tracts allows accurate estimation of muscle architectural parameters. Magn Reson Imaging 2012 ; 30 : 589–600. [CrossRef] [PubMed] [Google Scholar]
  47. Damon BM, Wadington MC, Hornberger JL, Lansdown DA. Absolute and relative contributions of BOLD effects to the muscle functional MRI signal intensity time course: effect of exercise intensity. Magn Reson Med 2007 ; 58 : 335–345. [CrossRef] [PubMed] [Google Scholar]
  48. Dass S, Suttie JJ, Piechnik SK, et al. Myocardial Tissue Characterization Using Magnetic Resonance Noncontrast T1 Mapping in Hypertrophic and Dilated Cardiomyopathy. Circ Cardiovasc Imaging 2012 ; 5 : 726–733. [CrossRef] [PubMed] [Google Scholar]
  49. de Jong S, Zwanenburg JJ, Visser F, et al. Direct detection of myocardial fibrosis by MRI. J Mol Cell Cardiol 2011 ; 51 : 974–979. [CrossRef] [PubMed] [Google Scholar]
  50. de Sousa PL, Vignaud A, Caldas de Almeida Araujo E, Carlier PG. Factors controlling T2 mapping from partially spoiled SSFP sequence: optimization for skeletal muscle characterization. Magn Reson Med 2012 ; 67 : 1379–1390. [CrossRef] [PubMed] [Google Scholar]
  51. de Sousa PL, Vignaud A, Fleury S, Carlier PG.. Fast monitoring of T(1), T(2), and relative proton density (M(0)) changes in skeletal muscles using an IR-TrueFISP sequence. J Magn Reson imaging 2011 ; 33 : 921–930. [CrossRef] [PubMed] [Google Scholar]
  52. Decorte N, Buehler T, Caldas de Almeida Araujo E, et al. Noninvasive estimation of oxygen consumption in human calf muscle through combined NMR measurements of ASL perfusion and T2 oxymetry. J Vasc Res 2014 ; 51 : 360–368. [CrossRef] [PubMed] [Google Scholar]
  53. Decostre V, Canal A, Ollivier G, et al. Wrist flexion and extension torques measured by highly sensitive dynamometer in healthy subjects from 5 to 80 years. BMC Musculoskelet Disord 2015 ; 16 : 4. Epub 2015 Jan 31. [CrossRef] [PubMed] [Google Scholar]
  54. Degardin A, Morillon D, Lacour A, et al. Morphologic imaging in muscular dystrophies and inflammatory myopathies. Skeletal Radiol 2010 ; 39 : 1219–1227. [CrossRef] [PubMed] [Google Scholar]
  55. Desguerre I, Mayer M, Leturcq F, et al. Endomysial Fibrosis in Duchenne Muscular Dystrophy. J Neuropathol Exp Neurol 2009 ; 68 : 762–773. [CrossRef] [PubMed] [Google Scholar]
  56. Deshmane A, Gulani V, Griswold MA, Seiberlich N. Parallel MR imaging. J Magn Reson Imaging 2012 ; 36 : 55–72. [CrossRef] [PubMed] [Google Scholar]
  57. Detre JA, Wang J. Technical aspects and utility of fMRI using BOLD and ASL. Clin Neurophysiol 2002 ; 113 : 621–34. [CrossRef] [PubMed] [Google Scholar]
  58. Donahue KM, Van Kylen J, Guven S, et al. Simultaneous gradientecho/spin-echo EPI of graded ischemia in human skeletal muscle. J Magn Reson Imaging 1998 ; 8 : 1106–13. [CrossRef] [PubMed] [Google Scholar]
  59. Donoho DL. Compressed sensing. IEEE Trans Inf Theory 2006 ; 1289–306. [CrossRef] [Google Scholar]
  60. Dowling P, Holland Ashling, Ohlendieck K.. Mass spectrometrybased identification of muscle-associated and muscle-derived proteomic biomarkers of dystrophinopathies. J Neuromuscul Dis 2014 ; 1 : 15–40. [EDP Sciences] [PubMed] [Google Scholar]
  61. Douglas AGL, Wood MJA. Splicing therapy for neuromuscular disease. Mol Cell Neurosci 2013 ; 56 : 169–185. [CrossRef] [PubMed] [Google Scholar]
  62. Drakonaki EE, Allen GM, Wilson DJ.. Ultrasound elastography for musculoskeletal applications. Br J Radiol 2012 ; 85 : 1435–45. [CrossRef] [PubMed] [Google Scholar]
  63. Du J, Bydder M, Takahashi AM, et al. Short T2 contrast with three-dimensional ultrashort echo time imaging. Magn Reson Imaging 2011 ; 29 : 470–482. [CrossRef] [PubMed] [Google Scholar]
  64. Du J, Takahashi AM, Chung CB. Ultrashort TE spectroscopic imaging (UTESI): application to the imaging of short T2 relaxation tissues in the musculoskeletal system. J Magn Reson Imaging 2009 ; 29 : 412–421. [CrossRef] [PubMed] [Google Scholar]
  65. Duteil S, Bourrilhon C, Raynaud JS, et al. Metabolic and vascular support for the role of myoglobin in humans: a multiparametric NMR study. Am J Physiol Regul Integr Comp Physiol 2004 ; 287 : R1441–R1449. [CrossRef] [PubMed] [Google Scholar]
  66. Duteil S, Wary C, Raynaud JS, et al. Influence of vascular filling and perfusion on BOLD contrast during reactive hyperemia in human skeletal muscle. Magn Reson Med 2006 ; 55 : 450–4. [CrossRef] [PubMed] [Google Scholar]
  67. e Lima KMM, da Matta TT, de Oliveira LF. Reliability of the rectus femoris muscle cross-sectional area measurements by ultrasonography. Clin Physiol Funct Imaging 2012 ; 32 : 221–6. [CrossRef] [PubMed] [Google Scholar]
  68. Edwards RH, Dawson MJ, Wilkie DR, et al. Clinical use of nuclear magnetic resonance in the investigation of myopathy. Lancet 1982; 725–30. [CrossRef] [Google Scholar]
  69. Edzes H, Samulski ET.. The measurement of cross-relaxation effects in the proton NMR spin-lattice relaxation of water in biological systems: Hydrated collagen and muscle. J Magn Reson 1978 ; 31 : 207–229. [Google Scholar]
  70. Eleff SM, Schnall MD, Ligetti L, et al. Concurrent measurements of cerebral blood flow, sodium, lactate, and high-energy phosphate metabolism using 19F, 23Na, 1H, and 31P nuclear magnetic resonance spectroscopy. Magn Reson Med 1988 ; 7 : 412–424. [CrossRef] [PubMed] [Google Scholar]
  71. Eliav U, Komlosh ME, Basser PJ, Navon G. Collagen composition and content-dependent contrast in porcine annulus fibrosus achieved by using double quantum and magnetization transfer filtered UTE MRI. Magn Reson Med 2014 ; 71 : 388–393. [CrossRef] [PubMed] [Google Scholar]
  72. Englund EK, Langham MC, Li C, et al. Combined measurement of perfusion, venous oxygen saturation, skeletal muscle T2* during reactive hyperemia in the leg. J Cardiovasc Magn Reson 2013 ; 15 : 70. [CrossRef] [PubMed] [Google Scholar]
  73. Englund EK, Langham MC, Ratcliffe SJ, et al. Multiparametric assessment of vascular function in peripheral artery disease: dynamic measurement of skeletal muscle perfusion, blood-oxygen-level dependent signal, and venous oxygen saturation. Circ Cardiovasc Imaging 2015; doi: 10.1161/CIRCIMAGING.114.002673. [Google Scholar]
  74. Ennen JP, Verma M, Asakura A. Vascular-targeted therapies for Duchenne muscular dystrophy. Skelet Muscle 2013 ; 3–9 : 1–12. [Google Scholar]
  75. Erriquez D, Perini G, Ferlini A. Non-coding RNAs in muscle dystrophies. Int J Mol Sci 2013 ; 14 : 19681–704. [CrossRef] [PubMed] [Google Scholar]
  76. Feng L, Grimm R, Block KT, et al. Golden-angle radial sparse parallel MRI: Combination of compressed sensing, parallel imaging, and golden-angle radial sampling for fast and flexible dynamic volumetric MRI. Magn Reson Med 2013 ; 72 : 707–717. [CrossRef] [PubMed] [Google Scholar]
  77. Filli L, Boss A, Wurnig MC, et al. Dynamic intravoxel incoherent motion imaging of skeletal muscle at rest and after exercise. NMR Biomed 2015 ; 28 : 240–246. [CrossRef] [PubMed] [Google Scholar]
  78. Fischmann A, Hafner P, Fasler S, et al. Quantitative MRI can detect subclinical disease progression in muscular dystrophy. J Neurol 2012 ; 259 : 1648–1654. [CrossRef] [PubMed] [Google Scholar]
  79. Fischmann A, Hafner P, Gloor M, et al. Quantitative MRI and loss of free ambulation in Duchenne muscular dystrophy. J Neurol 2013 ; 260 : 969–974. [CrossRef] [PubMed] [Google Scholar]
  80. Fischmann A, Morrow JM, Sinclair CDJ, et al. Improved anatomical reproducibility in quantitative lower-limb muscle MRI. J Magn Reson imaging 2014 ; 39 : 1033–1038. [CrossRef] [PubMed] [Google Scholar]
  81. Fleckenstein JL, Watumull D, Conner KE, et al. Denervated human skeletal muscle: MR imaging evaluation. Radiology 1993 ; 187 : 213–218. [CrossRef] [PubMed] [Google Scholar]
  82. Forbes SC, Willcocks RJ, Triplett WT, et al. Magnetic resonance imaging, spectroscopy assessment of lower extremity skeletal muscles in boys with Duchenne muscular dystrophy: a multicenter cross sectional study. PLoS One 2014 ; 9 : e106435. [CrossRef] [PubMed] [Google Scholar]
  83. Friedrich MG. Myocardial T1: The Rise of a Novel Biomarker Continues. JACC Cardiovasc Imaging 2015 ; 8 : 47–49. [CrossRef] [PubMed] [Google Scholar]
  84. Froeling M, Nederveen AJ, Heijtel DFR, et al. Diffusion-tensor MRI reveals the complex muscle architecture of the human forearm. J Magn Reson Imaging 2012 ; 36 : 237–248. [CrossRef] [PubMed] [Google Scholar]
  85. Froeling M, Nederveen AJ, Nicolay K, Strijkers GJ. DTI of human skeletal muscle: the effects of diffusion encoding parameters, signal-to-noise ratio and T2 on tensor indices and fiber tracts. NMR Biomed 2013 ; 26 : 1339–1352. [CrossRef] [PubMed] [Google Scholar]
  86. Froeling M, Oudeman J, Strijkers GJ, et al. Muscle changes detected with diffusion-tensor imaging after long-distance running. Radiology 2015 ; 274 : 548–562. [CrossRef] [PubMed] [Google Scholar]
  87. Froeling M, Oudeman J, van den Berg S, et al. Reproducibility of diffusion tensor imaging in human forearm muscles at 3.0 T in a clinical setting. Magn Reson Med 2010 ; 64 : 1182–90. [CrossRef] [PubMed] [Google Scholar]
  88. Fuchs BC, Wang H, Yang Y, et al. Molecular MRI of collagen to diagnose and stage liver fibrosis. J Hepatol 2013 ; 59 : 992–8. [CrossRef] [PubMed] [Google Scholar]
  89. Gaeta M, Messina S, Mileto A, et al. Muscle fat-fraction and mapping in Duchenne muscular dystrophy: evaluation of disease distribution and correlation with clinical assessments. Preliminary experience. Skeletal Radiol 2012 ; 41 : 955–61. [CrossRef] [PubMed] [Google Scholar]
  90. Garrood P, Hollingsworth KG, Eagle M, et al. MR imaging in Duchenne muscular dystrophy: quantification of T1-weighted signal, contrast uptake, and the effects of exercise. J Magn Reson imaging 2009 ; 30 : 1130–1138. [CrossRef] [PubMed] [Google Scholar]
  91. Gineste C, De Winter JM, Kohl C, et al. In vivo and in vitro investigations of heterozygous nebulin knock-out mice disclose a mild skeletal muscle phenotype. Neuromuscul Disord 2013a ; 23 : 357–369. [CrossRef] [Google Scholar]
  92. Gineste C, Duhamel G, Le Fur Y, Multimodal MRI, et al. (31)P-MRS investigations of the ACTA1(Asp286Gly) mouse model of nemaline myopathy provide evidence of impaired in vivo muscle function, altered muscle structure, disturbed energy metabo-lism. PLoS One 2013b ; 8 : e72294. [CrossRef] [Google Scholar]
  93. Gineste C, Le Fur Y, Vilmen C, Combined MRI, et al. 31P-MRS investigations of the ACTA1(H40Y) mouse model of nemaline myopathy show impaired muscle function, altered energy metabolism. PLoS One 2013c ; 8 : e61517. [CrossRef] [Google Scholar]
  94. Glaser KJ, Manduca A, Ehman RL.. Review of MR elastography applications and recent developments. J Magn Reson imaging 2012 ; 36 : 757–774. [CrossRef] [PubMed] [Google Scholar]
  95. Griswold MA, Jakob PM, Heidemann RM, et al. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 2002 ; 47 : 1202–1210. [CrossRef] [PubMed] [Google Scholar]
  96. Grözinger G, Pohmann R, Schick F, et al. Perfusion measurements of the calf in patients with peripheral arterial occlusive disease before and after percutaneous transluminal angioplasty using MR arterial spin labeling. J Magn Reson imaging 2013 ; 40 : 980–7. [CrossRef] [PubMed] [Google Scholar]
  97. Ha D-H, Choi S, Kang E-J, Park HT. Diffusion tensor imaging and T2 mapping in early denervated skeletal muscle in rats. J Magn Reson Imaging 2015 ; 42 : 617–623. [CrossRef] [PubMed] [Google Scholar]
  98. Heemskerk AM, Sinha TK, Wilson KJ, et al. Repeatability of DTI-based skeletal muscle fiber tracking. NMR Biomed 2010 ; 23 : 294–303. [PubMed] [Google Scholar]
  99. Heemskerk AM, Strijkers GJ, Drost MR, et al. Skeletal muscle degeneration and regeneration after femoral artery ligation in mice: monitoring with diffusion MR imaging. Radiology 2007 ; 243 : 413–421. [CrossRef] [PubMed] [Google Scholar]
  100. Heerschap A, Houtman C, in ’t Zandt HJ, et al. Introduction to in vivo 31P magnetic resonance spectroscopy of (human) skeletal muscle. Proc Nutr Soc 1999 ; 58 : 861–870. [CrossRef] [PubMed] [Google Scholar]
  101. Heier CR, Guerron AD, Korotcov A, et al. Non-invasive MRI and spectroscopy of mdx mice reveal temporal changes in dystrophic muscle imaging and in energy deficits. PLoS One 2014 ; 9 : e112477. [CrossRef] [PubMed] [Google Scholar]
  102. Henkelman RM, Stanisz GJ, Graham SJ. Magnetization transfer in MRI : a review. NMR Biomed 2001 ; 14 : 57–64. [CrossRef] [PubMed] [Google Scholar]
  103. Hennig J, Weigel M, Scheffler K. Calculation of Flip Angles for Echo Trains with Predefined Amplitudes with the Extended Phase Graph (EPG)-Algorithm: Principles and Applications to Hyperecho and TRAPS Sequences. 2004 ; 49 : 527–35. [Google Scholar]
  104. Heule R, Ganter C, Bieri O. Triple echo steady-state (TESS) relaxometry. Magn Reson Med 2014 ; 71 : 230–237. [CrossRef] [PubMed] [Google Scholar]
  105. Hiba B, Richard N, Hébert LJ, et al. Quantitative assessment of skeletal muscle degeneration in patients with myotonic dystrophy type 1 using MRI. J Magn Reson imaging 2012 ; 35 : 678–85. [CrossRef] [PubMed] [Google Scholar]
  106. Hinojar R, Foote L, Arroyo Ucar E, et al. Native T1 in Discrimination of Acute and Convalescent Stages in Patients With Clinical Diagnosis of Myocarditis. JACC Cardiovasc Imaging 2015 ; 8 : 37–46. [CrossRef] [PubMed] [Google Scholar]
  107. Hogrel J-Y, Allenbach Y, Canal A. etal. Four-year longitudinal study of clinical and functional endpoints in sporadic inclusion body myositis: implications for therapeutic trials. Neuromuscul Disord 2014 ; 24 : 604–610. [CrossRef] [PubMed] [Google Scholar]
  108. Hogrel J-Y, Barnouin Y, Azzabou N, et al. NMR imaging estimates of muscle volume and intramuscular fat infiltration in the thigh: variations with muscle, gender, and age. Age 2015 ; 37 (3) : 9798. [Google Scholar]
  109. Hollingsworth KG, de Sousa PL, Straub V, Carlier PG. Towards harmonization of protocols for MRI outcome measures in skeletal muscle studies:consensus recommendations from two TREAT-NMD NMR workshops, 2 May 2010, Stockholm, Sweden, 1–2 October 2009, Paris, France. Neuromuscul Disord 2012 ; 22 Suppl 2 : S54–67. [CrossRef] [PubMed] [Google Scholar]
  110. Hollingsworth KG, Garrood P, Eagle M, et al. Magnetic resonance imaging in Duchenne muscular dystrophy: Longitudinal assessment of natural history over 18 months. Muscle Nerve 2013a ; 48 : 586–588. [CrossRef] [Google Scholar]
  111. Hollingsworth KG, Higgins DM, McCallum M, et al. Investigating the quantitative fidelity of prospectively undersampled chemical shift imaging in muscular dystrophy with compressed sensing and parallel imaging reconstruction. Magn Reson Med 2013b ; 72 : 1016–1019. [Google Scholar]
  112. Hooijmans MT, Damon BM, Froeling M, et al. Evaluation of skeletal muscle DTI in patients with duchenne muscular dystrophy. NMR Biomed 2015 ; 28 : 1589–1597. [CrossRef] [PubMed] [Google Scholar]
  113. Horn M. 23Na magnetic resonance imaging for the determination of myocardial viability: the status and the challenges. Curr Vasc Pharmacol 2004 ; 2 : 329–333. [CrossRef] [PubMed] [Google Scholar]
  114. Hörster I, Weigt-Usinger K, Carmann C, et al. The L-arginine/NO pathway and homoarginine are altered in Duchenne muscular dystrophy and improved by glucocorticoids. Amino Acids 2015 ; 47 : 1853–1863. [CrossRef] [PubMed] [Google Scholar]
  115. Hu HH, Börnert P, Hernando D, et al. ISMRM workshop on fatwater separation: insights, applications and progress in MRI. Magn Reson Med 2012 ; 68 : 378–388. [CrossRef] [PubMed] [Google Scholar]
  116. Hu HH, Kan HE. Quantitative proton MR techniques for measuring fat. NMR Biomed 2013 ; 26 : 1609–1629. [CrossRef] [PubMed] [Google Scholar]
  117. Hunter DJ, Zhang W, Conaghan PG, et al. Systematic review of the concurrent and predictive validity of MRI biomarkers in OA. Osteoarthr Cartil 2011 ; 19 : 557–588. [CrossRef] [Google Scholar]
  118. Jacobi B, Bongartz G, Partovi S, et al. Skeletal muscle BOLD MRI: from underlying physiological concepts to its usefulness in clinical conditions. J Magn Reson imaging 2012 ; 35 : 1253–65. [CrossRef] [PubMed] [Google Scholar]
  119. Janiczek RL, Gambarota G, Sinclair CDJ, et al. Simultaneous T2 and lipid quantitation using IDEAL-CPMG. Magn Reson Med 2011 ; 66 : 1293–1302. [CrossRef] [PubMed] [Google Scholar]
  120. Janssen BH, Voet NBM, Nabuurs CI, et al. Distinct disease phases in muscles of facioscapulohumera dystrophy patients identified by MR detected fat Infiltration. PLoS One 2014 ; 9 : e85416. [CrossRef] [PubMed] [Google Scholar]
  121. Jordan BF, Kimpalou JZ, Beghein N, et al. Contribution of oxygenation to BOLD contrast in exercising muscle. Magn Reson Med 2004 ; 52 : 391–6. [CrossRef] [PubMed] [Google Scholar]
  122. Jovicich J, Marizzoni M, Sala-Llonch R, et al. Brain morphometry reproducibility in multi-center 3T MRI studies: a comparison of cross-sectional and longitudinal segmentations. Neuroimage 2013 ; 83 : 472–484. [CrossRef] [PubMed] [Google Scholar]
  123. Kamath S, Venkatanarasimha N, Walsh MA, Hughes PM. MRI appearance of muscle denervation. Skeletal Radiol 2008 ; 37 : 397–404. [CrossRef] [PubMed] [Google Scholar]
  124. Karampinos DC, Baum T, Nardo L, et al. Characterization of the regional distribution of skeletal muscle adipose tissue in type 2 diabetes using chemical shift-based water/fat separation. J Magn Reson imaging 2012 ; 35 : 899–907. [CrossRef] [PubMed] [Google Scholar]
  125. Karampinos DC, King KF, Sutton BP, Georgiadis JG. Myofiber ellipticity as an explanation for transverse asymmetry of skeletal muscle diffusion MRI in vivo signal. Ann Biomed Eng 2009 ; 37 : 2532–2546. [CrossRef] [PubMed] [Google Scholar]
  126. Karampinos DC, King KF, Sutton BP, Georgiadis JG.. Intravoxel partially coherent motion technique: characterization of the anisotropy of skeletal muscle microvasculature. J Magn Reson Imaging 2010 ; 31 : 942–953. [CrossRef] [PubMed] [Google Scholar]
  127. Karlsson A, Rosander J, Romu T, et al. Automatic and quantitative assessment of regional muscle volume by multi-atlas segmentation using whole-body water-fat MRI. J Magn Reson imaging 2015 ; 41 : 1558–69. [CrossRef] [PubMed] [Google Scholar]
  128. Kemp GJ, Meyerspeer M, Moser E Review Article Absolute quantification of phosphorus metabolite concentrations in human muscle in vivo by 31 P MRS : a quantitative review. NMR Biomed 2007 ; 20 : 555–65. [CrossRef] [PubMed] [Google Scholar]
  129. Kemp GJ, Taylor DJ, Dunn JF, et al. Cellular energetics of dystrophic muscle. J Neurol Sci 1993 ; 116 : 201–206. [CrossRef] [PubMed] [Google Scholar]
  130. Kharraz Y, Guerra J, Pessina P, et al. Understanding the process of fibrosis in Duchenne muscular dystrophy. Bio Med Res Int 2014; doi: 10.1155/2014/965631. [Google Scholar]
  131. Kim HK, Laor T, Horn PS, et al. T2 mapping in Duchenne muscular dystrophy: distribution of disease activity and correlation with clinical assessments. Radiology 2010 ; 255 : 899–908. [CrossRef] [PubMed] [Google Scholar]
  132. Kim HK, Serai S, Lindquist D, et al. Quantitative Skeletal Muscle MRI: Part 2, MR Spectroscopy and T2 Relaxation Time Mapping-Comparison Between Boys With Duchenne Muscular Dystrophy and Healthy Boys. Amer J of Roentgenol 2015 ; 205 : 216–23. [CrossRef] [Google Scholar]
  133. Kim HK, Serai S, Merrow AC. etal. Objective measurement of minimal fat in normal skeletal muscles of healthy children using T2 relaxation time mapping (T2 maps) and MR spectroscopy. Pediatr Radiol 2014 ; 44 : 149–157. [CrossRef] [PubMed] [Google Scholar]
  134. Klingler W, Jurkat-Rott K, Lehmann-Horn F, Schleip R. The role of fibrosis in Duchenne muscular dystrophy. Acta Myol 2012 ; 31 : 184–195. [PubMed] [Google Scholar]
  135. Kornegay JN, Bogan JR, Bogan DJ, et al. Canine models of Duchenne muscular dystrophy and their use in therapeutic strategies. Mamm genome 2012 ; 23 : 85–108. [CrossRef] [PubMed] [Google Scholar]
  136. Kusmia S, Eliav U, Navon G, Guillot G. DQF-MT MRI of connective tissues: application to tendon and muscle. Magma 2013 ; 26 : 203–214. [CrossRef] [PubMed] [Google Scholar]
  137. Lamminen AE. Magnetic resonance imaging of primary skeletal muscle diseases: patterns of distribution and severity of involvement. Br J Radiol 1990 ; 63 : 946–950. [CrossRef] [PubMed] [Google Scholar]
  138. Lavini C, de Jonge MC, van de Sande MGH, et al. Pixel-by-pixel analysis of DCE MRI curve patterns and an illustration of its application to the imaging of the musculoskeletal system. Magn Reson Imaging 2007 ; 25 : 604–12. [CrossRef] [PubMed] [Google Scholar]
  139. Le Guiner C, Montus M, Servais L, et al. Forelimb treatment in a large cohort of dystrophic dogs supports delivery of a recombinant AAV for exon skipping in Duchenne patients. Mol Ther 2014 ; 22 : 1923–1935. [CrossRef] [PubMed] [Google Scholar]
  140. Lebel RM, Wilman AH. Transverse relaxometry with stimulated echo compensation. Magn Reson Med 2010 ; 64 : 1005–14. [CrossRef] [PubMed] [Google Scholar]
  141. Lebon V, Brillault-Salvat C, Bloch G, et al. Evidence of muscle BOLD effect revealed by simultaneous interleaved gradient-echo NMRI and myoglobin NMRS during leg ischemia. Magn Reson Med 1998 ; 40 : 551–8. [CrossRef] [PubMed] [Google Scholar]
  142. Ledermann H-P, Schulte A-C, Heidecker H-G, et al. Blood oxygenation level-dependent magnetic resonance imaging of the skeletal muscle in patients with peripheral arterial occlusive disease. Circulation 2006 ; 113: 2929–35. [CrossRef] [PubMed] [Google Scholar]
  143. Lee YH, Lee HS, Lee HE, et al. Whole-Body Muscle MRI in Patients with Hyperkalemic Periodic Paralysis Carrying the SCN4A Mutation T704M: Evidence for Chronic Progressive Myopathy with Selective Muscle Involvement. J Clin Neurol 2015; 11 : 331–338 [CrossRef] [Google Scholar]
  144. Leong KM, Lau P, Ramadan S. Utilisation of MR spectroscopy and diffusion weighted imaging in predicting and monitoring of breast cancer response to chemotherapy. J Med Imaging Radiat Oncol 2015 ; 59 : 268–277. [CrossRef] [PubMed] [Google Scholar]
  145. Leroy-Willig A, Willig TN, Henry-Feugeas MC, et al. Body composition determined with MR in patients with Duchenne muscular dystrophy, spinal muscular atrophy, and normal subjects. Magn Reson Imaging 1997 ; 15 : 737–44. [CrossRef] [PubMed] [Google Scholar]
  146. Lerski RA, de Certaines JD, Duda D, et al. Application of texture analysis to muscle MRI: 2 - technical recommendations. EPJ Nonlinear Biomed Phys 2015 ; 3 : 1–20. [CrossRef] [EDP Sciences] [Google Scholar]
  147. Li C, Magland JF, Rad HS, et al. Comparison of optimized softtissue suppression schemes for ultrashort echo time MRI. Magn Reson Med 2012 ; 68 : 680–689. [CrossRef] [PubMed] [Google Scholar]
  148. Li K, Dortch RD, Kroop SF, et al. A rapid approach for quantitative magnetization transfer imaging in thigh muscles using the pulsed saturation method. Magn Reson Imaging 2015 ; 33 : 709–717. [CrossRef] [PubMed] [Google Scholar]
  149. Li K, Dortch RD, Welch EB, et al. Multi-parametric MRI characterization of healthy human thigh muscles at 3.0 T - relaxation, magnetization transfer, fat/water, and diffusion tensor imaging. NMR Biomed 2014 ; 27 : 1070–84. [CrossRef] [PubMed] [Google Scholar]
  150. Liu G-C, Jong Y-J, Chiang C-H, Jaw T-S Duchenne muscular Dystrophy: MR grading system with functional correlation. Radiology 1993 ; 186 : 475–480. [CrossRef] [PubMed] [Google Scholar]
  151. Lodi R, Kemp GJ, Muntoni F, et al. Reduced cytosolic acidification during exercise suggests defective glycolytic activity in skeletal muscle of patients with Becker muscular dystrophy. An in vivo 31P magnetic resonance spectroscopy study. Brain 1999 ; 122 : 121–30. [CrossRef] [PubMed] [Google Scholar]
  152. Longo R, Pollesello P, Ricci C, et al. Proton MR spectroscopy in quantitative in vivo determination of fat content in human liver steatosis. J Magn Reson Imaging 1995 ; 5 : 281–285. [CrossRef] [PubMed] [Google Scholar]
  153. Loughran T, Higgins DM, McCallum M, et al. Improving highly accelerated fat fraction measurements for clinical trials in muscular dystrophy: origin and quantitative effect of R2* changes. Radiology 2015 ; 275 : 570–578. [CrossRef] [PubMed] [Google Scholar]
  154. Lustig M, Donoho DL, Santos JM, Pauly JM. Compressed Sensing MRI. IEEE Signal Processing Magazine 2008 ; 25 : 72–85. [CrossRef] [Google Scholar]
  155. Lynn S, Aartsma-Rus A, Bushby K, et al. Measuring clinical effectiveness of medicinal products for the treatment of Duchenne muscular dystrophy. Neuromuscul Disord 2015 ; 25 : 96–105. [CrossRef] [PubMed] [Google Scholar]
  156. Ma J Dixon techniques for water and fat imaging. J Magn Reson imaging 2008 ; 28 : 543–558. [CrossRef] [PubMed] [Google Scholar]
  157. Madelin G, Regatte RR Biomedical applications of sodium MRI in vivo. J Magn Reson imaging 2013 ; 38 : 511–529. [CrossRef] [PubMed] [Google Scholar]
  158. Maillard SM, Jones R, Owens C, et al. Quantitative assessment of MRI T2 relaxation time of thigh muscles in juvenile dermatomyositis. Rheumatology (Oxford) 2004 ; 43 : 603–608. [CrossRef] [PubMed] [Google Scholar]
  159. Martins Bach A, Matot B, Wary C, et al. Non-invasive NMR study of the mouse model for centronuclear myopathy with mutation in the dynamin-2 gene. Neuromuscul Disord 2015 ; 25 : 275. [CrossRef] [Google Scholar]
  160. Martins-Bach AB, Malheiros J, Matot B, et al. Quantitative T2 combined with texture analysis of nuclear magnetic resonance images identify different degrees of muscle involvement in three mouse models of muscle dystrophy: mdx, Largemyd, mdx/ Largemyd. PLoS One 2015 ; 10 : e0117835. [CrossRef] [PubMed] [Google Scholar]
  161. Marty B, Vignaud A, Greiser A, et al. BLOCH equations-based reconstruction of myocardium t1 maps from modified look-locker inversion recovery sequence. PLoS One 2015 ; 10 : e0126766 [CrossRef] [PubMed] [Google Scholar]
  162. Marty B, Baudin PY, Reyngoudt H, et al. Simultaneous muscle water T2 and fat fraction mapping using transverse relaxometry with stimulated echo compensation. NMR Biomed 2016 ; 29 : 431–443. [CrossRef] [PubMed] [Google Scholar]
  163. Mathur S, Vohra RS, Germain SA, et al. Changes in muscle T2 and tissue damage after downhill running in mdx mice. Muscle Nerve 2011 ; 43 : 878–886. [CrossRef] [PubMed] [Google Scholar]
  164. Mattei JP, Le Fur Y, Cuge N, et al. Segmentation of fascias, fat and muscle from magnetic resonance images in humans: The DISPIMAG software. Magn Reson Mater Physics, Biol Med 2006 ; 19 : 275–79. [CrossRef] [Google Scholar]
  165. Mayhew A, Mazzone ES, Eagle M, et al. Development of the Performance of the Upper Limb module for Duchenne muscular dystrophy. Dev Med Child Neurol 2013 ; 55 : 1038–1045. [CrossRef] [PubMed] [Google Scholar]
  166. Mazzone E, De Sanctis R, Fanelli L, et al. Hammersmith Functional Motor Scale and Motor Function Measure-20 in non ambulant SMA patients. Neuromuscul Disord 2014 ; 24 : 347–352. [CrossRef] [PubMed] [Google Scholar]
  167. Mazzone ES, Vasco G, Palermo C, et al. A critical review of functional assessment tools for upper limbs in Duchenne muscular dystrophy. Dev Med Child Neurol 2012 ; 54 : 879–885. [CrossRef] [PubMed] [Google Scholar]
  168. McCullough MB, Domire ZJ, Reed AM, et al. Evaluation of muscles affected by myositis using magnetic resonance elastography. Muscle Nerve 2011 ; 43 : 585–590. [CrossRef] [PubMed] [Google Scholar]
  169. McDonald CM, Henricson EK, Abresch RT, et al. The 6-minute walk test and other clinical endpoints in duchenne muscular dystrophy: reliability, concurrent validity, and minimal clinically important differences from a multicenter study. Muscle Nerve 2013 ; 48 : 357–368. [CrossRef] [PubMed] [Google Scholar]
  170. McIntosh LM, Baker RE, Anderson JE Magnetic resonance imaging of regenerating and dystrophic mouse muscle. Biochem Cell Biol 1998 ; 76 : 532–541. [CrossRef] [PubMed] [Google Scholar]
  171. Mead AF, Petrov M, Malik AS, et al. Diaphragm remodeling and compensatory respiratory mechanics in a canine model of Duchenne muscular dystrophy. J Appl Physiol 2014 ; 116 : 807–815. [CrossRef] [PubMed] [Google Scholar]
  172. Mercuri E, Muntoni F Muscular dystrophy: new challenges and review of the current clinical trials. Curr Opin Pediatr 2013 ; 25 : 701–707. [CrossRef] [PubMed] [Google Scholar]
  173. Meyer RA, Towse TF, Reid RW, et al. BOLD MRI mapping of transient hyperemia in skeletal muscle after single contractions. NMR Biomed 2004 ; 17 : 392–398. [CrossRef] [PubMed] [Google Scholar]
  174. Miller CA, Naish JH, Bishop P, et al. Comprehensive Validation of Cardiovascular Magnetic Extracellular Volume. Circ Cardiovasc Imaging 2013 ; 6 : 373–383. [CrossRef] [PubMed] [Google Scholar]
  175. Mills KL Tamnes CK Methods and considerations for longitudinal structural brain imaging analysis across development. Dev Cogn Neurosci 2014 ; 9 : 172–190. [CrossRef] [PubMed] [Google Scholar]
  176. Mitsiopoulos N, Baumgartner RN, Heymsfield SB, et al. Cadaver validation of skeletal muscle measurement by magnetic resonance imaging and computerized tomography. J Appl Physiol 1998 ; 85 : 115–122. [PubMed] [Google Scholar]
  177. Moon JC, Messroghli DR, Kellman P, et al. Myocardial T1 mapping and extracellular volume quantification: a Society for Cardiovascular Magnetic Resonance (SCMR) and CMR Working Group of the European Society of Cardiology consensus statement. J Cardiovasc Magn Reson 2013 ; 15 : 92–103. [CrossRef] [PubMed] [Google Scholar]
  178. Morrison C, Henkelman RM A model for magnetization transfer in tissues. Magn Reson Med 1995 ; 33 : 475–482. [CrossRef] [PubMed] [Google Scholar]
  179. Morrow JM, Sinclair CDJ, Fischmann A, et al. MRI biomarker assessment of neuromuscular disease progression: a prospective observational cohort study. Lancet Neurol 2015 ; 4422 : 1–13. [Google Scholar]
  180. Morrow JM, Sinclair CDJ, Fischmann A, et al. Reproducibility, and age, body-weight and gender dependency of candidate skeletal muscle MRI outcome measures in healthy volunteers. Eur Radiol 2014 ; 24 : 1610–1620. [CrossRef] [PubMed] [Google Scholar]
  181. Morse CI, Degens H, Jones DA The validity of estimating quadriceps volume from single MRI cross-sections in young men. Eur J Appl Physiol 2007 ; 100 : 267–274. [CrossRef] [PubMed] [Google Scholar]
  182. Muntoni F, Wood MJA Targeting RNA to treat neuromuscular disease. Nat Rev Drug Discov 2011 ; 10 : 621–637. [CrossRef] [PubMed] [Google Scholar]
  183. Nardo L, Karampinos DC, Lansdown DA, et al. Quantitative assessment of fat infiltration in the rotator cuff muscles using water-fat MRI. J Magn Reson imaging 2014 ; 39 : 1178–1185. [CrossRef] [PubMed] [Google Scholar]
  184. Nelson MD, Rader F, Tang X, et al. PDE5 inhibition alleviates functional muscle ischemia in boys with Duchenne muscular dystrophy. Neurology 2014 ; 82 : 2085–2091. [CrossRef] [PubMed] [Google Scholar]
  185. Nardo L, Karampinos DC, Lansdown DA, et al. Quantitative assessment of fat infiltration in the rotator cuff muscles using water-fat MRI. J Magn Reson imaging 2014 ; 39 : 1178–85. [CrossRef] [PubMed] [Google Scholar]
  186. Nelson MD, Rader F, Tang X, et al. PDE5 inhibition alleviates functional muscle ischemia in boys with Duchenne muscular dystrophy. Neurology 2014 ; 82 : 2085–2091. [CrossRef] [PubMed] [Google Scholar]
  187. Nardo L, Karampinos DC, Lansdown DA, et al. Quantitative assessment of fat infiltration in the rotator cuff muscles using water-fat MRI. J Magn Reson imaging 2014 ; 39 : 1178–85. [CrossRef] [PubMed] [Google Scholar]
  188. Nelson MD, Rader F, Tang X, et al. PDE5 inhibition alleviates functional muscle ischemia in boys with Duchenne muscular dystrophy. Neurology 2014 ; 82 : 2085–2091. [CrossRef] [PubMed] [Google Scholar]
  189. Newman RJ, Bore PJ, Chan L, et al. (1982) Nuclear magnetic resonance studies of forearm muscle in Duchenne dystrophy. Br Med J (Clin Res Ed) 284 : 1072–74. [CrossRef] [PubMed] [Google Scholar]
  190. Nozaki T, Tasaki A, Horiuchi S, et al. Quantification of Fatty Degeneration Within the Supraspinatus Muscle by Using a 2-Point Dixon Method on 3-T MRI. Amer J Roentgenol 2015 ; 205 : 116–122. [CrossRef] [Google Scholar]
  191. Ogawa S, Lee TM, Kay AR, Tank DW. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 1990 ; 87 : 9868–9872. [CrossRef] [Google Scholar]
  192. Pacak CA, Walter GA, Gaidosh G, et al. Long-term skeletal muscle protection after gene transfer in a mouse model ofLGMD-2D. Mol Ther 2007 ; 15 : 1775–1781. [CrossRef] [PubMed] [Google Scholar]
  193. Pane M, Mazzone ES, Sormani MP, et al. 6 Minute walk test in Duchenne MD patients with different mutations: 12 month changes. PLoS One 2014 ; 9 : e83400. [CrossRef] [PubMed] [Google Scholar]
  194. Park J, Wicki J, Knoblaugh SE, et al. Multi-parametric MRIat 14T for muscular dystrophy mice treated with AAV vector-mediated gene therapy. PLoS One 2015 ; 10 : e0124914. [CrossRef] [PubMed] [Google Scholar]
  195. Park JH, Vansant JP, Kumar NG, et al. Dermatomyositis: correlative MR imaging and P-31 MR spectroscopy for quantitative characterization of inflammatory disease. Radiology 1990 ; 177 : 473–479. [CrossRef] [PubMed] [Google Scholar]
  196. Partovi S, Schulte A-C, Aschwanden M, et al. Impaired skeletal muscle microcirculation in systemic sclerosis. Arthritis Res Ther 2012 ; 14 : R209. [CrossRef] [PubMed] [Google Scholar]
  197. Partovi S, von Tengg-Kobligk H, Bhojwani N, et al. Advanced Noncontrast MR Imaging in Musculoskeletal Radiology. Radiol Clin North Am 2015 ; 53 : 549–567. [CrossRef] [PubMed] [Google Scholar]
  198. Parzy E, Fromes Y, Thiaudiere E, Carlier PG. Rapid Communication Refinement of cardiac NMR imaging in awake hamsters: proof of feasibility and characterization of cardiomyopathy. NMR Biomed 2007 ; 20 : 615–623. [CrossRef] [PubMed] [Google Scholar]
  199. Périé S, Trollet C, Mouly V, et al. Autologous myoblast transplantation for oculopharyngeal muscular dystrophy: a phase I/IIa clinical study. Mol Ther 2014 ; 22 : 219–225. [CrossRef] [PubMed] [Google Scholar]
  200. Pichiecchio A, Uggetti C, Egitto MG, et al. Quantitative MR evaluation of body composition in patients with Duchenne muscular dystrophy. Eur Radiol 2002 ; 12 : 2704–2709. [PubMed] [Google Scholar]
  201. Polak JF, Jolesz FA, Adams DF. Magnetic resonance imaging of skeletal muscle. Prolongation of T1 and T2 subsequent to denervation. Invest Radiol 1988 ; 23 : 365–369. [CrossRef] [PubMed] [Google Scholar]
  202. Ponrartana S, Ramos-Platt L, Wren TAL, et al. Effectiveness of diffusion tensor imaging in assessing disease severity in Duchenne muscular dystrophy: preliminary study. Pediatr Radiol 2015 ; 45 : 582–589. [CrossRef] [PubMed] [Google Scholar]
  203. Pratt SJ, Xu S, Mullins RJ, Lovering RM. Temporal changes in magnetic resonance imaging in the mdx mouse. BMC Res Notes 2013; 6 : 262. [CrossRef] [PubMed] [Google Scholar]
  204. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med 1999 ; 42 : 952–962. [CrossRef] [PubMed] [Google Scholar]
  205. Qi J, Olsen NJ, Price RR, et al. Diffusion-weighted imaging of inflammatory myopathies: polymyositis and dermatomyositis. J Magn Reson Imaging 2008 ; 27 : 212–217. [CrossRef] [PubMed] [Google Scholar]
  206. Ravaglia S, Pichiecchio A, Ponzio M, et al. Changes in skeletal muscle qualities during enzyme replacement therapy in late-onset type II glycogenosis: temporal and spatial pattern of mass vs. strength response. J Inherit Metab Dis 2010 ; 33 : 737–45. [CrossRef] [PubMed] [Google Scholar]
  207. Raynaud JS, Duteil S, Vaughan JT, et al. Determination of skeletal muscle perfusion using arterial spin labeling NMRI: Validation by comparison with venous occlusion plethysmography. Magn Reson Med 2001 ; 46 : 305–11. [CrossRef] [PubMed] [Google Scholar]
  208. Redmond OM, Stack JP, O’Connor NG, et al. 31P MRS as an early prognostic indicator of patient response to chemotherapy. Magn Reson Med 1992 ; 25 : 30–44. [CrossRef] [PubMed] [Google Scholar]
  209. Ringleb SI, Bensamoun SF, Chen Q, et al. Applications of magnetic resonance elastography to healthy and pathologic skeletal muscle. J Magn Reson imaging 2007 ; 25 : 301–309. [CrossRef] [PubMed] [Google Scholar]
  210. Robson MD, Bydder GM Clinical ultrashort echo time imaging of bone and other connective tissues. NMR Biomed 2006 ; 19 : 765–780. [CrossRef] [PubMed] [Google Scholar]
  211. Rooney WD, Pollaro JR, Forbes SC, et al. Application of the Extended Phas e Graph Technique to Improve T2 Quantitation Across Sites. In: Proceedings ISMRM 5419 2011. [Google Scholar]
  212. Saab G, Thompson RT, Marsh GD Effects of exercise on muscle transverse relaxation determined by MR imaging and in vivo relaxometry. J Appl Physiol 2000 ; 88 : 226–233. [PubMed] [Google Scholar]
  213. Saab G, Thompson RT, Marsh GD Multicomponent T 2 Relaxation of In Vivo Skeletal Muscle. Magn Reson Med 1999 ; 157 : 150–157. [CrossRef] [Google Scholar]
  214. Schewzow K, Fiedler GB, Meyerspeer M, et al. Dynamic ASL and T2*-weighted MRI in exercising calf muscle at 7 T: A feasibility study. Magn Reson Med 2014 ; 73 : 1190–5 [CrossRef] [PubMed] [Google Scholar]
  215. Schmitt P, Griswold MA, Jakob PM, et al. Inversion recoveryTrueFISP: quantification of T(1), T(2), and spin density. Magn Reson Med 2004 ; 51 : 661–7. [CrossRef] [PubMed] [Google Scholar]
  216. Schwenzer NF, Martirosian P, Machann J, et al. Aging effects on human calf muscle properties assessed by MRI at 3 Tesla. J Magn Reson imaging 2009a ; 29 : 1346–1354. [CrossRef] [Google Scholar]
  217. Schwenzer NF, Steidle G, Martirosian P, et al. Diffusion tensor imaging of the human calf muscle: distinct changes in fractional anisotropy and mean diffusion due to passive muscle shortening and stretching. NMR Biomed 2009b ; 22 : 1047–1053. [Google Scholar]
  218. Scott E, Eagle M, Mayhew A, et al. Development of a functional assessment scale for ambulatory boys with Duchenne muscular dystrophy. Physiother Res Int 2012 ; 17 : 101–109. [CrossRef] [PubMed] [Google Scholar]
  219. Scotter EL, Shaw CE. Neuromuscular disease: new insights and avenues for therapy. Lancet Neurol 2013 ; 12 : 13–15. [CrossRef] [PubMed] [Google Scholar]
  220. Seferian AM, Moraux A, Annoussamy M, et al. Upper limb strength and function changes during a one-year follow-up in non-ambulant patients with Duchenne Muscular Dystrophy: an observational multicenter trial. PLoS One 2015a; 10 : e0113999. [CrossRef] [Google Scholar]
  221. Seferian AM, Moraux A, Canal A, et al. Upper limb evaluation and one-year follow up of non-ambulant patients with spinal muscular atrophy: an observational multicenter trial. PLoS One 2015 ; 10 : e0121799 [CrossRef] [PubMed] [Google Scholar]
  222. Servais L, Deconinck N, Moraux A, et al. Innovative methods to assess upper limb strength and function in non-ambulant Duchenne patients. Neuromuscul Disord 2013 ; 23 : 139–148. [CrossRef] [PubMed] [Google Scholar]
  223. Shin HJ, Baek H-M, Ahn J-H, et al. Prediction of pathologic response to neoadjuvant chemotherapy in patients with breast cancer using diffusion-weighted imaging and MRS. NMR Biomed 2012 ; 25 : 1349–1359. [CrossRef] [PubMed] [Google Scholar]
  224. Sigmund EE, Novikov DS, Sui D, et al. Time-dependent diffusion in skeletal muscle with the random permeable barrier model (RPBM) : application to normal controls and chronic exertional compartment syndrome patients. NMR Biomed 2014 ; 27 : 519–528. [CrossRef] [PubMed] [Google Scholar]
  225. Sigmund EE, Sui D, Ukpebor O, et al. Stimulated echo diffusion tensor imaging and SPAIR T2 - weighted imaging in chronic exertional compartment syndrome of the lower leg muscles. J Magn Reson Imaging 2013 ; 38 : 1073–1082. [CrossRef] [PubMed] [Google Scholar]
  226. Sinclair CDJ, Morrow JM, Miranda MA, et al. Skeletal muscle MRI magnetisation transfer ratio reflects clinical severity in peripheral neuropathies. J Neurol Neurosurg Psychiatry 2012 ; 83 : 29–32. [CrossRef] [PubMed] [Google Scholar]
  227. Sinclair CDJ, Samson RS, Thomas DL, et al. Quantitative magnetization transfer in in vivo healthy human skeletal muscle at 3 T. Magn Reson Med 2010 ; 64 : 1739–48. [CrossRef] [PubMed] [Google Scholar]
  228. Siu AG, Ramadeen A, Hu X, et al. Characterization of the ultrashort-TE (UTE) MR collagen signal. NMR Biomed 2015 ; 28 : 1236–1244. [CrossRef] [PubMed] [Google Scholar]
  229. Smeulders MJC, van den Berg S, Oudeman J, et al. Reliability of in vivo determination of forearm muscle volume using 3.0 T magnetic resonance imaging. J Magn Reson imaging 2010 ; 31 : 1252–5. [CrossRef] [PubMed] [Google Scholar]
  230. Sproule DM, Montgomery MJ, Punyanitya M, et al. Thigh muscle volume measured by magnetic resonance imaging is stable over a 6-month interval in spinal muscular atrophy. J Child Neurol 2011 ; 26 : 1252–1259. [CrossRef] [PubMed] [Google Scholar]
  231. Statland, Jeffrey, Donlin-Smith, Colleen M, Tapscott, Stephen J, Van der Maarel, Silvère M, Tawil, Rabi Multiplex screen of serum biomarkers in facioscapulohumeral muscular mystrophy. J Neuromuscul Dis 2014 ; 1 : 181–90. [PubMed] [Google Scholar]
  232. Stejskal EO, Tanner JE Spin diffusion measurements: spin echoes in the presence of a time-dependant field gradient. J Chem Phys 1965 ; 42 : 288–292. [Google Scholar]
  233. Strandberg S, Wretling M-L, Wredmark T, Shalabi A Reliability of computed tomography measurements in assessment of thigh muscle cross-sectional area and attenuation. BMC Med Imaging 2010 ; 10 : 18 [CrossRef] [PubMed] [Google Scholar]
  234. Straub V, Donahue KM, Allamand V, et al. Contrast agentenhanced magnetic resonance imaging of skeletal muscle damage in animal models of muscular dystrophy. Magn Reson Med 2000 ; 44 : 655–659. [CrossRef] [PubMed] [Google Scholar]
  235. Strimbu K, Tavel JA. What are biomarkers?. Curr Opin HIV AIDS 2010 ; 5 : 463–466. [CrossRef] [PubMed] [Google Scholar]
  236. Tanaka NI, Kanehisa H. Applicability of Single Muscle CSA for Predicting Segmental Muscle Volume in Young Men. Int J Sports Med 2014 ; 35 : 608–614. [CrossRef] [PubMed] [Google Scholar]
  237. Tardif-de Géry S, Vilquin J, Carlier P, et al. Muscular transverse relaxation time measurement by magnetic resonance imaging at 4 Tesla in normal and dystrophic dy/dy and dy(2j)/dy(2j) mice. Neuromuscul Disord 2000 ; 10 : 507–13. [CrossRef] [PubMed] [Google Scholar]
  238. Tasca G, Pescatori M, Monforte M, et al. Different molecular signatures in magnetic resonance imaging-staged facioscapulohumeral muscular dystrophy muscles. PLoS One 2012 ; 7 : e38779. [CrossRef] [PubMed] [Google Scholar]
  239. Thibaud J, Matot B, Barthélémy I, et al. Diaphragm structural abnormalities revealed by NMR imaging in the dystrophic dog. Neuromuscul Disord 2013 ; 23 : 809–10. [CrossRef] [Google Scholar]
  240. Thibaud J-L, Azzabou N, Barthelemy I, et al. Comprehensive longitudinal characterization of canine muscular dystrophy by serial NMR imaging of GRMD dogs. Neuromuscul Disord 2012 ; 22 Suppl 2 : 85–99. [CrossRef] [Google Scholar]
  241. Thibaud J-L, Monnet A, Bertoldi D, et al. Characterization of dystrophic muscle in golden retriever muscular dystrophy dogs by nuclear magnetic resonance imaging. Neuromuscul Disord 2007 ; 17 : 575–584. [CrossRef] [PubMed] [Google Scholar]
  242. Thomas GD Functional muscle ischemia in Duchenne and Becker muscular dystrophy. Front Physiol 2013 ; 4 : 381–386. [CrossRef] [PubMed] [Google Scholar]
  243. Thomas MS, Newman D, Leinhard OD, et al. Test-retest reliability of automated whole body and compartmental muscle volume measurements on a wide bore 3T MR system. Eur Radiol 2014 ; 24 : 2279–2291. [CrossRef] [PubMed] [Google Scholar]
  244. Thulborn K, Soffe N, Kadda G (1981) Simultaneous in vivo measurement of oxygen utilization and high-energy phosphate metabolism in rabbit skeletal muscle by multinuclear 1H and 31P NMR. J Magn Reson 1981 ; 45 : 362–366. [Google Scholar]
  245. Tofts PS Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. J Magn Reson Imaging 1997 ; 7 : 91–101. [CrossRef] [PubMed] [Google Scholar]
  246. Tofts PS. Quantitative MRI of the brain: measuring changes caused by disease. John Wiley 2003. [Google Scholar]
  247. Tofts PS, Brix G, Buckley DL, et al. Contrast-wnhanced T 1 - weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 1999 ; 232 : 223–232. [CrossRef] [Google Scholar]
  248. Torriani M, Townsend E, Thomas BJ, et al. Lower leg muscle involvement in Duchenne muscular dystrophy: an MR imaging and spectroscopy study. Skeletal Radiol 2012 ; 41 : 437–445. [CrossRef] [PubMed] [Google Scholar]
  249. Tosetti M, Linsalata S, Battini R, et al. Muscle metabolic alterations assessed by 31-phosphorus magnetic resonance spectroscopy in mild Becker muscular dystrophy. Muscle Nerve 2011 ; 44 : 816–819. [CrossRef] [PubMed] [Google Scholar]
  250. Touznik A, Lee JJA, Yokota T. New developments in exon skipping and splice modulation therapies for neuromuscular diseases. Expert Opin Biol Ther 2014 ; 14 : 809–819. [CrossRef] [Google Scholar]
  251. Tyler DJ, Robson MD, Henkelman RM, et al. Magnetic resonance imaging with ultrashort TE (UTE) PULSE sequences: technical considerations. J Magn Reson imaging 2007 ; 25 : 279–289. [CrossRef] [PubMed] [Google Scholar]
  252. Vasan RS. Biomarkers of cardiovascular disease: molecular basis and practical considerations. Circulation 2006 ; 113 : 2335–62. [CrossRef] [PubMed] [Google Scholar]
  253. Vignaud A, Guillot G, Caldas de Almeida Araujo E, Carlier PG. NMR imaging of short T2-components in skeletal muscle tissue. Neuromuscul Disord 2014 ; 24 : 837. [CrossRef] [Google Scholar]
  254. Vohra R, Accorsi A, Kumar A, et al. Magnetic Resonance Imaging Is Sensitive to Pathological Amelioration in a Model for Laminin-Deficient Congenital Muscular Dystrophy (MDC1A). PLoS One 2015a; 10 : e0138254. [CrossRef] [Google Scholar]
  255. Vohra RS, Lott D, Mathur S, et al. Magnetic Resonance Assessment of Hypertrophic and Pseudo-Hypertrophic Changes in Lower Leg Muscles of Boys with Duchenne Muscular Dystrophy, Their Relationship to Functional Measurements. PLoS One 2015b ; 10 : e0128915. [CrossRef] [Google Scholar]
  256. Vohra RS, Mathur S, Bryant ND, et al. Age-related T2 changes in hindlimb muscles of mdx mice. Muscle Nerve 2015c ; 53 (1) : 84–90. [CrossRef] [Google Scholar]
  257. Voit T The challenge of making therapies happen for neuromuscular diseases. Neuromuscul Disord 2014 ; 24 : 918–919. [CrossRef] [Google Scholar]
  258. Voit T, Topaloglu H, Straub V, et al. Safety and efficacy of drisapersen for the treatment of Duchenne muscular dystrophy (DEMAND II) : an exploratory, randomised, placebo-controlled phase 2 study. Lancet Neurol 2014 ; 13 : 987–996. [CrossRef] [PubMed] [Google Scholar]
  259. Wagner KR, Fleckenstein JL, Amato AA, et al. A phase I/IItrial of MY0–029 in adult subjects with muscular dystrophy. Ann Neurol ; 63 : 561–71. [Google Scholar]
  260. Walker UA. Imaging tools for the clinical assessment of idiopathic inflammatory myositis. Curr Opin Rheumatol 2008 ; 20 : 656–661. [CrossRef] [PubMed] [Google Scholar]
  261. Walter G, Cordier L, Bloy D, Sweeney HL Noninvasive monitoring of gene correction in dystrophic muscle. Magn Reson Med 2005 ; 54 : 1369–1376. [CrossRef] [PubMed] [Google Scholar]
  262. Wang J, Fan Z, Vandenborne K, et al. A computerized MRI biomarker quantification scheme for a canine model of Duchenne muscular dystrophy. Int J Comput Assist Radiol Surg 2013 ; 8 (5) : 763–74. [CrossRef] [PubMed] [Google Scholar]
  263. Wang K, Yu H, Brittain J. K space water fat decomposition with T2* estimation, multifrequency fat spectrum modeling for ultrashort echo time imaging. J Magn Reson Imaging 2010 ; 31 (4) : 1027–1034. [CrossRef] [PubMed] [Google Scholar]
  264. Wary C, Azzabou N, Giraudeau C, et al. Quantitative NMRI and NMRS identify augmented disease progression after loss of ambulation in forearms of boys with Duchenne muscular dystrophy. NMR Biomed 2015a ; 28 : 1150–1162. [CrossRef] [Google Scholar]
  265. Wary C, Azzabou N, Giraudeau C, et al. Quantitative NMRI and NMRS identify augmented disease progression after loss of ambulation in forearms of boys with Duchenne muscular dystrophy. NMR Biomed 2015b ; 28 : 1150–62. [Google Scholar]
  266. Wary C, Nadaj-Pakleza A, Laforet P, et al. Investigating glycogenosis type III patients with multi-parametric functional NMR imaging and spectroscopy. Neuromuscul Disord 2010 ; 20 : 548–58. [CrossRef] [PubMed] [Google Scholar]
  267. Wary C, Naulet T, Thibaud J-L, et al. Splitting of Pi and other 31P NMR anomalies of skeletal muscle metabolites in canine muscular dystrophy. NMR Biomed 2012 ; 25 : 1160–9. [CrossRef] [PubMed] [Google Scholar]
  268. Weigel M. Extended phase graphs: Dephasing, RF pulses and echoes - pure and simple.. J Magn Reson Imaging 2014. [PubMed] [Google Scholar]
  269. Willcocks RJ, a Arpan I, Forbes SC, et al. Longitudinal measurements of MRI-T2 in boys with Duchenne muscular dystrophy: effects of age and disease progression. Neuromuscul Disord 2014; 24: 393–401. [Google Scholar]
  270. Weigel M. Extended phase graphs: Dephasing, RF pulses, and echoes - pure and simple. J Magn Reson Imaging 2014. [PubMed] [Google Scholar]
  271. Willcocks RJ, a Arpan I, Forbes SC, et al. Longitudinal measurements of MRI-T2 in boys with Duchenne muscular dystrophy: effects of age and disease progression. Neuromuscul Disord 2014 ; 24 : 393–401. [CrossRef] [PubMed] [Google Scholar]
  272. Williams SA, Reid S, Elliott C, et al. Muscle volume alterations in spastic muscles immediately following botulinum toxin type-A treatment in children with cerebral palsy. Dev Med Child Neurol 2013 ; 55 : 813–820. [CrossRef] [PubMed] [Google Scholar]
  273. Willis TA, Hollingsworth KG, Coombs A, et al. Quantitative muscle MRI as an assessment tool for monitoring disease progression in LGMD2I: a multicentre longitudinal study. PLoS One 2013 ; 8 : e70993. [CrossRef] [PubMed] [Google Scholar]
  274. Wishnia A, Alameddine H, Tardif de Gery S, Leroy-Willig A. Use of magnetic resonance imaging for noninvasive characterization and follow-up of an experimental injury to normal mouse muscles. Neuromuscul Disord 2001 ; 11: 50–55. [CrossRef] [PubMed] [Google Scholar]
  275. Wokke BH, Bos C, Reijnierse M, et al. Comparison of dixon and T1-weighted MR methods to assess the degree of fat infiltration in duchenne muscular dystrophy patients. J Magn Reson imaging 2013 ; 38 : 619–24. [CrossRef] [PubMed] [Google Scholar]
  276. Wokke BH, Hooijmans MT van den Bergen JC, et al. Muscle MRS detects elevated PDE/ATP ratios prior to fatty infiltration in Becker muscular dystrophy. NMR Biomed 2014a ; 27 : 1371–7. [CrossRef] [Google Scholar]
  277. Wokke BH, van den Bergen JC, Versluis MJ, et al. Quantitative MRI and strength measurements in the assessment of muscle quality in Duchenne muscular dystrophy. Neuromuscul Disord 2014b ; 24 : 409–16. [CrossRef] [Google Scholar]
  278. Wokke BH, van den Bergen JC, Hooijmans MT, et al. T2 relaxation times are increased in skeletal muscle of DMD but not BMD patients. Muscle Nerve 2016 ; 53 : 38–43. [CrossRef] [PubMed] [Google Scholar]
  279. Wren TA, Bluml S, Tseng-Ong L, Gilsanz V. Three-point technique of fat quantification of muscle tissue as a marker of disease progression in Duchenne muscular dystrophy: preliminary study. Amer J Roentgenol 2008 ; 190 : W8–W12. [CrossRef] [Google Scholar]
  280. Wynn TA. Cellular and molecular mechanisms of fibrosis. J Pathol; 214 : 199–210. [Google Scholar]
  281. Xi W, Perdanasari AT, Ong Y, et al. Objective breast volume, shape and surface area assessment: a systematic review of breast measurement methods. Aesthetic Plast Surg 2014 ; 38 : 1116–1130. [CrossRef] [PubMed] [Google Scholar]
  282. Yanagisawa O, Shimao D, Maruyama K, et al. Diffusion-weighted magnetic resonance imaging of human skeletal muscles: gender-, ageand muscle-related differences in apparent diffusion coefficient. Magn Reson Imaging 2009 ; 27 : 69–78. [CrossRef] [PubMed] [Google Scholar]
  283. Yao L, Gai N. Fat-corrected T2 measurement as a marker of active muscle disease in inflammatory myopathy. Am J Roentgenol 2012 ; 198 : 475–481. [CrossRef] [Google Scholar]
  284. Yarnykh VL. Actual flip-angle imaging in the pulsed steady state: a method for rapid three-dimensional mapping of the transmitted radiofrequency field. Magn Reson Med 2007 ; 57 : 192–200. [CrossRef] [PubMed] [Google Scholar]
  285. Yarnykh VL, Tartaglione EV, Ioannou GN. Fast macromolecular proton fraction mapping of the human liver in vivo for quantitative assessment of hepatic fibrosis. NMR Biomed 2015 ; 28 : 1716–1725. [CrossRef] [PubMed] [Google Scholar]
  286. Yasuda T, Loenneke JP, Thiebaud RS, Abe T. Effects of detraining after blood flow-restricted low-intensity concentric or eccentric training on muscle size and strength. J Physiol Sci 2015 ; 65 : 139–144. [CrossRef] [PubMed] [Google Scholar]
  287. Yokota T, Lu Q-L, Partridge T, et al. Efficacy of systemic morpholino exon-skipping in Duchenne dystrophy dogs. Ann Neurol 2009 ; 65 : 667–76. [CrossRef] [PubMed] [Google Scholar]
  288. Younkin DP, Berman P, Sladky J, et al. 31P NMR studies in Duchenne muscular dystrophy: age-related metabolic changes. Neurology 1987 ; 37 : 165–169. [CrossRef] [PubMed] [Google Scholar]
  289. Zaraiskaya T, Kumbhare D, Noseworthy MD. Diffusion tensor imaging in evaluation of human skeletal muscle injury. J Magn Reson Imaging 2006 ; 24 : 402–408. [CrossRef] [PubMed] [Google Scholar]
  290. Zheng J, An H, Coggan AR, et al. Noncontrast skeletal muscle oximetry. Magn Reson Med 2013 ; 71 : 318–325. [CrossRef] [PubMed] [Google Scholar]
  291. Zheng J, Hasting MK, Zhang X, et al. A pilot study of regional perfusion and oxygenation in calf muscles of individuals with diabetes with a non-invasive measure. J Vasc Surg 2014 ; 59 : 419–426. [CrossRef] [PubMed] [Google Scholar]
  292. Zhou L, Lu H. Targeting fibrosis in Duchenne muscular dystrophy. J Neuropathol Exp Neurol 2010 ; 69 : 771–776. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.