Open Access
Numéro
Cah. Myol.
Numéro 13, Juin 2016
Page(s) 15 - 24
Section Prise en charge / Management
DOI https://doi.org/10.1051/myolog/201613005
Publié en ligne 11 juillet 2016
  1. Aartsma-Rus A, Van Deutekom JC, Fokkema IF, et al. Entries in the Leiden Duchenne muscular dystrophy mutation database: an overview of mutation types and paradoxical cases that confirm the reading-frame rule. Muscle Nerve 2006 ; 34 : 135–144. [CrossRef] [PubMed] [Google Scholar]
  2. Amann KJ, Renley BA, Ervasti JM. A Cluster of basic repeats in the dystrophin rod domain binds F-actin through an electrostatic interaction. J Biol Chem 1998 ; 273 : 28419–28423. [CrossRef] [PubMed] [Google Scholar]
  3. Ayalon G, Davis JQ, Scotland PB, et al. An ankyrin-based mechanism for functional organization of dystrophin and dystroglycan. Cell 2008 ; 135 : 1189–1200. [CrossRef] [PubMed] [Google Scholar]
  4. Bhosle RC, Michele DE, Campbell KP, et al. Interactions of intermediate filament protein synemin with dystrophin and utrophin. Biochem Biophys Res Commun 2006 ; 346 : 768–777. [CrossRef] [PubMed] [Google Scholar]
  5. Campbell K, Kahl S. Association of dystrophin and an integral membrane glycoprotein. Nature 1989 ; 338 : 259–262. [CrossRef] [PubMed] [Google Scholar]
  6. Desguerre I, Laugel V. Diagnosis and natural history of Duchenne muscular dystrophy. Arch Pediatr 2015 ; 22 : 12S24–30. [CrossRef] [PubMed] [Google Scholar]
  7. Dwianingsih EK, Malueka RG, Nishida A, et al. A novel splicing silencer generated by DMD exon 45 deletion junction could explain upstream exon 44 skipping that modifies dystrophinopathy. J Hum Genet 2014 ; 59 : 423–429. [CrossRef] [PubMed] [Google Scholar]
  8. Emery AE. (ed). Diagnostic criteria for neuromuscular disorders baarn. The Netherlands : ENMC, 1994. [Google Scholar]
  9. Ervasti J, Campbell K. Membrane organization of the dystrophin-glycoprotein complex. Cell 1991 ; 66 : 1121–1131. [CrossRef] [PubMed] [Google Scholar]
  10. Flanigan KM, Ceco E, Lamar KM, et al. LTBP4 genotype predicts age of ambulatory loss in Duchenne muscular dystrophy. Ann Neurol 2013 ; 73 : 481–488. [CrossRef] [PubMed] [Google Scholar]
  11. Gentil C, Leturcq F, Ben Yaou R, et al. Variable phenotype of del45–55 Becker patients correlated with nNOSmu mislocalization and RYR1 hypernitrosylation. Hum Mol Genet 2012 ; 21 : 3449–3460. [CrossRef] [PubMed] [Google Scholar]
  12. Harper SQ, Hauser MA, DelloRusso C, et al. Modular flexibility of dystrophin: implications for gene therapy of Duchenne muscular dystrophy. Nat Med 2002 ; 8 : 253–261. [CrossRef] [PubMed] [Google Scholar]
  13. Koenig M, Hoffman EP, Bertelson CJ, et al. Complete cloning of the Duchenne muscular dystrophy (DMD) cDNA and preliminary genomic organization of the DMD gene in normal and affected individuals. Cell 1987 ; 50 : 509–517. [CrossRef] [PubMed] [Google Scholar]
  14. Koenig M, Monaco AP, Kunkel LM. The complete sequence of dystrophin predicts a rod-shaped cytoskeletal protein. Cell 1988 ; 53 : 219–226. [CrossRef] [PubMed] [Google Scholar]
  15. Lai Y, Zhao J, Yue Y, et al. Alpha2 and alpha3 helices of dystrophin R16 and R17 frame a microdomain in the alpha1 helix of dystrophin R17 for neuronal NOS binding. Proc Natl Acad Sci USA 2013 ; 110 : 525–530. [CrossRef] [Google Scholar]
  16. Le Rumeur E, Winder SJ, Hubert JF. Dystrophin: more than just the sum of its parts. Biochim Biophys Acta 2010 ; 1804 : 1713–1722. [CrossRef] [PubMed] [Google Scholar]
  17. Legardinier S, Hubert JF, Le Bihan O, et al. Sub-domains of the dystrophin rod domain display contrasting lipid-binding and stability properties. Biochim Biophys Acta 2008 ; 1784 : 672–682. [CrossRef] [PubMed] [Google Scholar]
  18. Legardinier S, Raguénès-Nicol C, Tascon C, et al. Mapping of the lipid-binding and stability properties of the central rod domain of human dystrophin. J Mol Biol 2009 ; 389 : 546–558. [CrossRef] [PubMed] [Google Scholar]
  19. Leturcq F, Tuffery-Giraud S. Genetics and molecular aspects of dystrophinopathies. Arch Pediatr 2015 ; 22 : 12S3–1. [CrossRef] [PubMed] [Google Scholar]
  20. Molza AE, Mangat K, Le Rumeur E, et al. Structural basis of neuronal nitric-oxide synthase interaction with dystrophin repeats 16 and 17. J Biol Chem 2015 ; 290 : 29531–29541. [CrossRef] [PubMed] [Google Scholar]
  21. Monaco A, Bertelson C, Liechti-Gallati S, et al. An explanation for the phenotypic differences between patients bearing partial deletions of the DMD locus. Genomics 1988 ; 2 : 90–95. [CrossRef] [PubMed] [Google Scholar]
  22. Monaco AP, Neve RL, Colletti-Feener C, et al. Isolation of candidate cDNAs for portions of the Duchenne muscular dystrophy gene. Nature 1986 ; 323 : 646–650. [CrossRef] [PubMed] [Google Scholar]
  23. Muntoni F, Torelli S, Ferlini A. Dystrophin and mutations: one gene, several proteins, multiple phenotypes. Lancet Neurol 2003 ; 2 : 731–740. [CrossRef] [PubMed] [Google Scholar]
  24. Newey SE, Benson MA, Ponting CP, et al. Alternative splicing of dystrobrevin regulates the stoichiometry of syntrophin binding to the dystrophin protein complex. Curr Biol 2000 ; 10 : 1295–1298. [CrossRef] [PubMed] [Google Scholar]
  25. Nicolas A, Lucchetti-Miganeh C, Ben Yaou R, et al. Assessment of the structural, functional impact of in-frame mutations of the DMD gene, using the tools included in the eDystrophin online database. Orphanet J Rare Dis 2012 ; 7 : 45. [CrossRef] [PubMed] [Google Scholar]
  26. Nicolas A, Raguenes-Nicol C, Ben Yaou R, et al. Becker muscular dystrophy severity is linked to the structure of dystrophin. Hum Mol Genet 2015 ; 24 : 1267–1279. [CrossRef] [PubMed] [Google Scholar]
  27. Petrof BJ, Shrager JB, Stedman HH, et al. Dystrophin protects the sarcolemma from stresses developed during muscle contraction. Proc Natl Acad Sci USA 1993 ; 90 : 3710–3714. [CrossRef] [Google Scholar]
  28. Piva L, Gavassini BF, Bello L, et al. TGFBR2 but not SPP1 genotype modulates osteopontin expression in Duchenne muscular dystrophy muscle. J Pathol 2012 ; 228 : 251–259. [CrossRef] [PubMed] [Google Scholar]
  29. Prins KW, Humston JL, Mehta A, et al. Dystrophin is a microtubule-associated protein. J Cell Biol 2009 ; 186 : 363–369. [CrossRef] [PubMed] [Google Scholar]
  30. Reynolds JG, McCalmon SA, Donaghey JA, et al. Deregulated protein kinase A signaling and myospryn expression in muscular dystrophy. J Biol Chem 2008 ; 283 : 8070–8074. [CrossRef] [PubMed] [Google Scholar]
  31. Rezniczek GA, Konieczny P, Nikolic B, et al. Plectin 1f scaffolding at the sarcolemma of dystrophic (mdx) muscle fibers through multiple interactions with beta-dystroglycan. J Cell Biol 2007 ; 176 : 965–977. [CrossRef] [PubMed] [Google Scholar]
  32. Sadoulet-Puccio H, Rajala M, Kunkel L. Dystrobrevin and dystrophin : an interaction through coiled-coil motifs. Proc Natl Acad Sci USA 1997 ; 94 : 12413–12418. [CrossRef] [Google Scholar]
  33. Sadoulet-Puccio HM, Khurana TS, Cohen JB, et al. Cloning and characterization of the human homologue of a dystrophin related phosphoprotein found at the Torpedo electric organ postsynaptic membrane. Hum Mol Genet 1996 ; 5 : 489–496. [CrossRef] [PubMed] [Google Scholar]
  34. Tuffery-Giraud S, Beroud C, Leturcq F, et al. Genotype-phenotype analysis in 2, 405 patients with a dystrophinopathy using the UMD-DMD database : a model of nationwide knowledgebase. Hum Mutat 2009 ; 30 : 934–945. [CrossRef] [PubMed] [Google Scholar]
  35. Van Deutekom JC, Bremmer-Bout M, Janson AA, et al. Antisense- induced exon skipping restores dystrophin expression in DMD patient derived muscle cells. Hum Mol Genet 2001 ; 10 : 1547–1554. [CrossRef] [PubMed] [Google Scholar]
  36. Vieira NM, Elvers I, Alexander MS, et al. Jagged 1 rescues the Duchenne muscular dystrophy phenotype. Cell 2015 ; 163 : 1204–1213. [CrossRef] [PubMed] [Google Scholar]
  37. Vo AH, McNally EM. Modifier genes and their effect on Duchenne muscular dystrophy. Curr Opin Neurol 28 : 528–534. [CrossRef] [PubMed] [Google Scholar]
  38. Winder SJ, Gibson TJ, Kendrick-Jones J. Dystrophin and utrophin: the missing links! FEBS Lett 1995 ; 369 : 27–33. [CrossRef] [PubMed] [Google Scholar]
  39. Yamashita K, Suzuki A, Satoh Y, et al. The 8th and 9th tandem spectrin-like repeats of utrophin cooperatively form a functional unit to interact with polarity-regulating kinase PAR-1b. Biochem Biophys Res Commun 2010 ; 391 : 812–817. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.