EDP Sciences logo
Open Access
Numéro
Cah. Myol.
Numéro 25, juillet 2022
Page(s) 23 - 29
Section Mise au point / Focus
DOI https://doi.org/10.1051/myolog/202225006
Publié en ligne 11 août 2022
  1. Satoyoshi E, Kinoshita M. Oculopharyngodistal myopathy. Arch Neurol 1977 Feb ; 34 (2) : 89–92. [CrossRef] [PubMed] [Google Scholar]
  2. Deng J, Yu J, Li P, et al. Expansion of GGC Repeat in GIPC1 Is Associated with Oculopharyngodistal Myopathy. Am J Hum Genet 2020 Jun 4 ; 106 (6) : 793–804. [CrossRef] [PubMed] [Google Scholar]
  3. Durmus H, Laval SH, Deymeer F, et al. Oculopharyngodistal myopathy is a distinct entity: clinical and genetic features of 47 patients. Neurology 2011 Jan 18 ; 76 (3) : 227–35. [CrossRef] [PubMed] [Google Scholar]
  4. Zhao J, Liu J, Xiao J, et al. Clinical and muscle imaging findings in 14 mainland chinese patients with oculopharyngodistal myopathy. PLoS One 2015 Jun 3 ; 10 (6) : e0128629. [CrossRef] [PubMed] [Google Scholar]
  5. Ogasawara M, Iida A, Kumutpongpanich T, et al. CGG expansion in NOTCH2NLC is associated with oculopharyngodistal myopathy with neurological manifestations. Acta Neuropathol Commun 2020 Nov 25 ; 8 (1) : 204. [CrossRef] [PubMed] [Google Scholar]
  6. Ishiura H, Shibata S, Yoshimura J, et al. Noncoding CGG repeat expansions in neuronal intranuclear inclusion disease, oculopharyngodistal myopathy and an overlapping disease. Nat Genet 2019 Aug ; 51 (8) : 1222–232. [CrossRef] [PubMed] [Google Scholar]
  7. Xi J, Wang X, Yue D, et al. 5’ UTR CGG repeat expansion in GIPC1 is associated with oculopharyngodistal myopathy. Brain 2021 Mar 3 ; 144 (2) : 601–14. [CrossRef] [PubMed] [Google Scholar]
  8. Yu J, Deng J, Guo X, et al. The GGC repeat expansion in NOTCH2NLC is associated with oculopharyngodistal myopathy type 3. Brain 2021 Jul 28 ; 144 (6) : 1819–32. [CrossRef] [PubMed] [Google Scholar]
  9. Yu J, Shan J, Yu M, et al. The CGG repeat expansion in RILPL1 is associated with oculopharyngodistal myopathy type 4. Am J Hum Genet 2022 Mar 3 ; 109 (3) : 533–41. [CrossRef] [PubMed] [Google Scholar]
  10. Lee JE, Cooper TA. Pathogenic mechanisms of myotonic dystrophy. Biochem Soc Trans 2009 Dec ; 37 : 1281–6. [CrossRef] [PubMed] [Google Scholar]
  11. Liquori CL, Ricker K, Moseley ML, et al. Myotonic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9. Science 2001 Aug 3 ; 293 (5531) : 864–7. [CrossRef] [PubMed] [Google Scholar]
  12. Miller JW, Urbinati CR, Teng-Umnuay P, et al. Recruitment of human muscleblind proteins to (CUG)(n) expansions associated with myotonic dystrophy. EMBO J 2000 Sep 1 ; 19 (17) : 4439–48. [CrossRef] [PubMed] [Google Scholar]
  13. Ho TH, Charlet-B N, Poulos MG, et al. Muscleblind proteins regulate alternative splicing. EMBO J 2004 Aug 4 ; 23 (15) : 3103–12. [CrossRef] [PubMed] [Google Scholar]
  14. Dansithong W, Paul S, Comai L, et al. MBNL1 is the primary determinant of focus formation and aberrant insulin receptor splicing in DM1. J Biol Chem 2005 ; 280 : 5773–80. [CrossRef] [PubMed] [Google Scholar]
  15. Tomé FM, Fardeau M. Nuclear inclusions in oculopharyngeal dystrophy. Acta Neuropathol 1980 ; 49(1) : 85–7. [CrossRef] [PubMed] [Google Scholar]
  16. Brais B, Bouchard JP, Xie YG, et al. Short GCG expansions in the PABP2 gene cause oculopharyngeal muscular dystrophy. Nat Genet 1998 Feb ; 18 (2) : 164–7. [CrossRef] [PubMed] [Google Scholar]
  17. Calado A, Tomé FM, Brais B, et al. Nuclear inclusions in oculopharyngeal muscular dystrophy consist of poly(A) binding protein 2 aggregates which sequester poly(A) RNA. Hum Mol Genet 2000 Sep 22 ; 9 (15) : 2321–8. [CrossRef] [PubMed] [Google Scholar]
  18. Trollet C, Anvar SY, Venema A, et al. Molecular and phenotypic characterization of a mouse model of oculopharyngeal muscular dystrophy reveals severe muscular atrophy restricted to fast glycolytic fibres. Hum Mol Genet 2010 Jun 1 ; 19 (11) : 2191–207. [CrossRef] [PubMed] [Google Scholar]
  19. Jacquemont S, Hagerman RJ, Leehey M, et al. Fragile X premutation tremor/ataxia syndrome: molecular, clinical, and neuroimaging correlates. Am J Hum Genet 2003 Apr ; 72 (4) : 869–78. [CrossRef] [PubMed] [Google Scholar]
  20. Greco CM, Hagerman RJ, Tassone F, et al. Neuronal intranuclear inclusions in a new cerebellar tremor/ataxia syndrome among fragile X carriers. Brain 2002 Aug ; 125 : 1760–71. [CrossRef] [PubMed] [Google Scholar]
  21. Greco CM, Berman RF, Martin RM, et al. Neuropathology of fragile X-associated tremor/ataxia syndrome (FXTAS). Brain 2006 Jan ; 129 : 243–55. [CrossRef] [PubMed] [Google Scholar]
  22. Hunsaker MR, Greco CM, Spath MA, et al. Widespread noncentral nervous system organ pathology in fragile X premutation carriers with fragile X-associated tremor/ataxia syndrome and CGG knock-in mice. Acta Neuropathol 2011 Oct ; 122 (4) : 467–79. [CrossRef] [PubMed] [Google Scholar]
  23. Hagerman RJ, Leehey M, Heinrichs W, et al. Intention tremor, parkinsonism, and generalized brain atrophy in male carriers of fragile X. Neurology 2001 Jul 10 ; 57 (1) : 127–30. [CrossRef] [PubMed] [Google Scholar]
  24. Oberlé I, Rousseau F, Heitz D, et al. Instability of a 550-base pair DNA segment and abnormal methylation in fragile X syndrome. Science 1991 May 24 ; 252 (5009) : 1097–102. [CrossRef] [PubMed] [Google Scholar]
  25. Coffee B, Zhang F, Warren ST, et al. Acetylated histones are associated with FMR1 in normal but not fragile X-syndrome cells. Nat Genet 1999 May ; 22 (1) : 98–101. [CrossRef] [PubMed] [Google Scholar]
  26. Tassone F, Hagerman RJ, Loesch DZ, et al. Fragile X males with unmethylated, full mutation trinucleotide repeat expansions have elevated levels of FMR1 messenger RNA. Am J Med Genet 2000 Sep 18 ; 94 (3) : 232–6. [CrossRef] [PubMed] [Google Scholar]
  27. Todd PK, Oh SY, Krans A, et al. CGG repeat-associated translation mediates neurodegeneration in fragile X tremor ataxia syndrome. Neuron 2013 May 8 ; 78 (3) : 440–55. [CrossRef] [PubMed] [Google Scholar]
  28. Sellier C, Buijsen RAM, He F, et al. Translation of Expanded CGG Repeats into FMRpolyG Is Pathogenic and May Contribute to Fragile X Tremor Ataxia Syndrome. Neuron 2017 Jan 18 ; 93 (2) : 331–47. [CrossRef] [PubMed] [Google Scholar]
  29. Kozak M. Context effects and inefficient initiation at non-AUG codons in eucaryotic cell-free translation systems. Mol Cell Biol 1989 Nov ; 9 (11) : 5073–80. [PubMed] [Google Scholar]
  30. Sone J, Mitsuhashi S, Fujita A, et al. Long-read sequencing identifies GGC repeat expansions in NOTCH2NLC associated with neuronal intranuclear inclusion disease. Nat Genet 2019 Aug ; 51 (8) : 1215–21. [CrossRef] [PubMed] [Google Scholar]
  31. Gelpi E, Botta-Orfila T, Bodi L, et al. Neuronal intranuclear (hyaline) inclusion disease and fragile X-associated tremor/ataxia syndrome: a morphological and molecular dilemma. Brain 2017 Aug 1 ; 140 (8) : e51. [CrossRef] [PubMed] [Google Scholar]
  32. Kimber TE, Blumbergs PC, Rice JP, et al. Familial neuronal intranuclear inclusion disease with ubiquitin positive inclusions. J Neurol Sci 1998 Sep 18 ; 160 (1) : 33–40. [CrossRef] [PubMed] [Google Scholar]
  33. Deng J, Gu M, Miao Y, et al. Long-read sequencing identified repeat expansions in the 5’UTR of the NOTCH2NLC gene from Chinese patients with neuronal intranuclear inclusion disease. J Med Genet 2019 Nov ; 56 (11) : 758–64. [CrossRef] [PubMed] [Google Scholar]
  34. Tian Y, Wang JL, Huang W, et al. Expansion of HumanSpecific GGC Repeat in Neuronal Intranuclear Inclusion DiseaseRelated Disorders. Am J Hum Genet 2019 Jul 3 ; 105 (1) : 166–76. [CrossRef] [PubMed] [Google Scholar]
  35. Boivin M, Deng J, Pfister V, et al. Translation of GGC repeat expansions into a toxic polyglycine protein in NIID defines a novel class of human genetic disorders: The polyG diseases. Neuron 2021 Jun 2 ; 109 (11) : 1825–35. [CrossRef] [PubMed] [Google Scholar]
  36. Zhong S, Lian Y, Luo W, et al. Upstream open reading frame with NOTCH2NLC GGC expansion generates polyglycine aggregates and disrupts nucleocytoplasmic transport: implications for polyglycine diseases. Acta Neuropathol 2021 Oct 25. [PubMed] [Google Scholar]
  37. Boivin M, Charlet-Berguerand N. Trinucleotide CGG Repeat Diseases: An Expanding Field of Polyglycine Proteins ? Front Genet 2022 Feb 28 ; 13 : 843014. [CrossRef] [PubMed] [Google Scholar]
  38. Fukuda H, Yamaguchi D, Nyquist K, et al. Father-to-offspring transmission of extremely long NOTCH2NLC repeat expansions with contractions: genetic and epigenetic profiling with long-read sequencing. Clin Epigenetics 2021 Nov 13 ; 13 (1) : 204. [CrossRef] [PubMed] [Google Scholar]
  39. Kumutpongpanich T, Ogasawara M, Ozaki A, et al. Clinicopathologic Features of Oculopharyngodistal Myopathy With LRP12 CGG Repeat Expansions Compared With Other Oculopharyngodistal Myopathy Subtypes. JAMA Neurol 2021 Jul 1 ; 78 (7) : 853–63. [CrossRef] [PubMed] [Google Scholar]
  40. Xu K, Li Y, Allen EG, et al. Therapeutic Development for CGG Repeat Expansion-Associated Neurodegeneration. Front Cell Neurosci 2021 May ; 12 (15) : 655568. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.