Open Access
Numéro |
Cah. Myol.
Numéro 15, Juin 2017
|
|
---|---|---|
Page(s) | 17 - 21 | |
Section | Mise au point / Focus | |
DOI | https://doi.org/10.1051/myolog/201715017 | |
Publié en ligne | 23 juin 2017 |
- Koenig M, Hoffman EP, Bertelson CJ, et al. Complete cloning of the Duchenne muscular dystrophy (DMD) cDNA and preliminary genomic organization of the DMD gene in normal and affected individuals. Cell 1987; 50 : 509–17. [CrossRef] [PubMed] [Google Scholar]
- Campbell KP, Kahl SD. Association of dystrophin and an integral membrane glycoprotein. Nature 1989; 338 : 259–62. [CrossRef] [PubMed] [Google Scholar]
- Carr C, Fischbach GD, Cohen JB. A novel 87, 000-Mr protein associated with acetylcholine receptors in Torpedo electric organ and vertebrate skeletal muscle. J Cell Biol 1989; 109 : 1753–64. [CrossRef] [PubMed] [Google Scholar]
- Fisher LW, Termine JD, Young MF. Deduced protein sequence of bone small proteoglycan I (biglycan) shows homology with proteoglycan II (decorin) and several nonconnective tissue proteins in a variety of species. J Biol Chem 1989; 264 : 4571–6. [PubMed] [Google Scholar]
- Ibraghimov-Beskrovnaya O, Ervasti JM, Leveille CJ, et al. Primary structure of dystrophin-associated glycoproteins linking dystrophin to the extracellular matrix. Nature 1992; 355 : 696–702. [CrossRef] [PubMed] [Google Scholar]
- Fardeau M, Matsumura K, Tomé FM, et al. Deficiency of the 50 kDa dystrophin associated glycoprotein (adhalin) in severe autosomal recessive muscular dystrophies in children native from European countries. CR Acad Sci III 1993; 316 : 799–804. [Google Scholar]
- Gee SH, Blacher RW, Douville PJ, et al. Laminin-binding protein 120 from brain is closely related to the dystrophin-associated glycoprotein, dystroglycan, and binds with high affinity to the major heparin binding domain of laminin. J Biol Chem 1993; 268 : 14972–80. [PubMed] [Google Scholar]
- Yang B, Ibraghimov-Beskrovnaya O, Moomaw CR, et al. Heterogeneity of the 59-kDa dystrophin-associated protein revealed by cDNA cloning and expression. JBiol Chem 1994; 269 : 6040–4. [Google Scholar]
- Peters MF, Kramarcy NR, Sealock R, Froehner SC. Beta 2-Syntrophin: localization at the neuromuscular junction in skeletal muscle. Neuroreport 1994; 5 : 1577–80. [CrossRef] [PubMed] [Google Scholar]
- Lim LE, Duclos F, Broux O, et al. Beta-sarcoglycan: characterization and role in limb-girdle muscular dystrophy linked to 4q12. Nat Genet 1995; 11 : 257–65. [CrossRef] [PubMed] [Google Scholar]
- Song KS, Scherer PE, Tang Z, et al. Expression of caveolin-3 in skeletal, cardiac, and smooth muscle cells. Caveolin-3 is a component of the sarcolemma and co-fractionates with dystrophin and dystrophin-associated glycoproteins. JBiol Chem 1996; 271 : 15160–5. [CrossRef] [Google Scholar]
- Jung D, Leturcq F, Sunada Y, et al. Absence of gamma-sarcoglycan (35 DAG) in autosomal recessive muscular dystrophy linked to chromosome 13q12. FEBS Lett 1996; 381 : 15–20. [PubMed] [Google Scholar]
- Jung D, Duclos F, Apostol B, et al. Characterization of deltasarcoglycan, a novel component of the oligomeric sarcoglycan complex involved in limb-girdle muscular dystrophy. J Biol Chem 1996; 271 : 32321–9. [CrossRef] [PubMed] [Google Scholar]
- Straub V, Ettinger AJ, Durbeej M, et al. Epsilon-sarcoglycan replaces alpha-sarcoglycan in smooth muscle to form a unique dystrophin-glycoprotein complex. J Biol Chem 1999; 274 : 27989–96. [CrossRef] [PubMed] [Google Scholar]
- Crosbie RH, Heighway J, Venzke DP, et al. Sarcospan, the 25-kDa transmembrane component of the dystrophin-glycoprotein complex. J Biol Chem 1997; 272 : 31221–4. [CrossRef] [PubMed] [Google Scholar]
- Piluso G, Mirabella M, Ricci E, et al. Gamma1- and gamma2-syntrophins, two novel dystrophin-binding proteins localized in neuronal cells. J Biol Chem 2000; 275 : 15851–60. [CrossRef] [PubMed] [Google Scholar]
- Mizuno Y, Thompson TG, Guyon JR, et al. Desmuslin, an intermediate filament protein that interacts with alpha -dystrobrevin and desmin. Proc Natl Acad Sci USA 2001; 98 : 6156–61. [CrossRef] [Google Scholar]
- Newey SE, Howman EV, Ponting CP, et al. Syncoilin, a novel member of the intermediate filament superfamily that interacts with alpha-dystrobrevin in skeletal muscle. J Biol Chem 2001; 276 : 6645–55. [CrossRef] [PubMed] [Google Scholar]
- Benson MA, Newey SE, Martin-Rendon E, et al. Dysbindin, a novel coiled-coil-containing protein that interacts with the dystrobrevins in muscle and brain. J Biol Chem 2001; 276: 24232–41. [CrossRef] [PubMed] [Google Scholar]
- Wheeler MT, Zarnegar S, McNally EM. Zeta-sarcoglycan, a novel component of the sarcoglycan complex, is reduced in muscular dystrophy. Hum Mol Genet 2002; 11 : 2147–54. [CrossRef] [PubMed] [Google Scholar]
- Shiga K, Yoshioka H, Matsumiya T, et al. Zeta-sarcoglycan is a functional homologue of gamma-sarcoglycan in the formation of the sarcoglycan complex. Exp Cell Res 2006; 312 : 2083–92. [PubMed] [Google Scholar]
- Taghli-Lamallem O, Jagla K, Chamberlain JS, et al. Mechanical and non-mechanical functions of Dystrophin can prevent cardiac abnormalities in Drosophila. Exp Gerontol 2014; 49 : 26–34. [CrossRef] [PubMed] [Google Scholar]
- Anastasi G, Cutroneo G, Santoro G. Costameric proteins in human skeletal muscle during muscular inactivity. J Anat 2008; 213 : 284–95. [CrossRef] [PubMed] [Google Scholar]
- Matsuda C, Hayashi YK, Ogawa M, et al. The sarcolemmal proteins dysferlin and caveolin-3 interact in skeletal muscle. Hum Mol Genet 2001; 10 : 1761–6. [CrossRef] [PubMed] [Google Scholar]
- Sotgia F, Lee JK, Das K, et al. Caveolin-3 directly interacts with the C-terminal tail of beta -dystroglycan. Identification of a central WW-like domain within caveolin family members. J Biol Chem 2000; 275 : 38048–58. [CrossRef] [PubMed] [Google Scholar]
- Paul AC, Sheard PW, Kaufman SJ, Duxson MJ. Localization of alpha 7 integrins and dystrophin suggests potential for both lateral and longitudinal transmission of tension in large mammalian muscles. Cell Tissue Res 2002; 308 : 255–65. [CrossRef] [PubMed] [Google Scholar]
- Pilgram GS, Potikanond S, Baines RA, et al. The roles of the dystrophin-associated glycoprotein complex at the synapse. Mol NeuroBiol 2010; 41 : 1–21. [PubMed] [Google Scholar]
- Bougé AL, Murauer E, Beyne E, et al. Targeted RNA-Seq profiling of splicing pattern in the DMD gene: exons are mostly constitutively spliced in human skeletal muscle. Sci Rep 2017; 7 : 39094. [CrossRef] [PubMed] [Google Scholar]
- Sadoulet-Puccio HM, Kunkel LM. Dystrophin and its isoforms. Brain Pathol 1996; 6 : 25–35. [PubMed] [Google Scholar]
- Khurana TS, Watkins SC, Kunkel LM. The subcellular distribution of chromosome 6-encoded dystrophin-related protein in the brain. J Cell Biol 1992; 119 : 357–66. [CrossRef] [PubMed] [Google Scholar]
- Jimenez-Mallebrera C, Davies K, Putt W, Edwards YH. A study of short utrophin isoforms in mice deficient for full-length utrophin. Mamm Genome 2003; 14 : 47–60. [CrossRef] [PubMed] [Google Scholar]
- Zuellig RA, Bornhauser BC, Knuesel I, et al. Identification and characterisation of transcript and protein of a new short N-terminal utrophin isoform. J Cell Biochem 2000; 77 : 418–31. [CrossRef] [PubMed] [Google Scholar]
- Roberts RG, Freeman TC, Kendall E, et al. Characterization of DRP2, a novel human dystrophin homologue. Nat Genet 1996; 13 : 223–6. [CrossRef] [PubMed] [Google Scholar]
- Blake DJ, Nawrotzki R, Peters MF, et al. Isoform diversity of dystrobrevin, the murine 87-kDa postsynaptic protein. J Biol Chem 1996; 271 : 7802–10. [CrossRef] [PubMed] [Google Scholar]
- Bohm SV, Roberts RG. Expression of members of the dystrophin, dystrobrevin, and dystrotelin superfamily. Crit Rev Eukaryot Gene Expr 2009; 19 : 89–108. [PubMed] [Google Scholar]
- Fabbrizio E, Pons F, Robert A, et al. The dystrophin superfamily: variability and complexity. J Musc Res Cell Motil 1994; 15: 595–606. [CrossRef] [Google Scholar]
- Jin H, Tan S, Hermanowski J, Bohm S, et al. The dystrotelin, dystrophin and dystrobrevin superfamily: new paralogues and old isoforms. BMC Genomics 2007; 8 : 19. [CrossRef] [PubMed] [Google Scholar]
- Constantin B. Dystrophin complex functions as a scaffold for signalling proteins. Biochim Biophys Acta 2014; 1838 : 635–42. [PubMed] [Google Scholar]
- Iyer SR, Shah SB, Valencia AP, et al. Altered nuclear dynamics in MDX myofibers. J Appl Physiol (1985) 2017; 122 : 470–81. [CrossRef] [PubMed] [Google Scholar]
- Cao JM, Cheng XN, Li SQ, et al. Identification of novel MYO18A interaction partners required for myoblast adhesion and muscle integrity. Sci Rep 2016; 6 : 36768. [CrossRef] [PubMed] [Google Scholar]
- Rahimov F, Kunkel LM. The cell biology of disease: cellular and molecular mechanisms underlying muscular dystrophy. J Cell Biol 2013; 201: 499–510. [CrossRef] [PubMed] [Google Scholar]
- Serrano AL, Munoz-Canoves P. Fibrosis development in early-onset muscular dystrophies: mechanisms and translational implications. Semin Cell Dev Biol 2017; 64: 181–90. [CrossRef] [PubMed] [Google Scholar]
- Nakamura A. X-linked dilated cardiomyopathy: a cardiospecific phenotype of dystrophinopathy. Pharmaceuticals (Basel) 2015; 8 : 303–20. [PubMed] [Google Scholar]
- Cripe LH, Tobias JD. Cardiac considerations in the operative management of the patient with Duchenne or Becker muscular dystrophy. Paediatr Anaesth 2013; 23 : 777–84. [CrossRef] [PubMed] [Google Scholar]
- Rauch U, Shami A, Zhang F, et al. Increased neointimal thickening in dystrophin-deficient mdx mice. PLoS One 2012; 7: e29904. [PubMed] [Google Scholar]
- Latroche C, Matot B, Martins-Bach A, et al. Structural and functional alterations of skeletal muscle microvasculature in dystrophin-deficient mdx mice. Am J Pathol 2015; 185 : 2482–94. [PubMed] [Google Scholar]
- Manning J, Buckley MM, O’Halloran KD, O’Malley D. In vivo neutralization of IL-6 receptors ameliorates gastrointestinal dysfunction in dystrophin-deficient mdx mice. Neurogastroenterol Motil 2016;28: 1016–26. [PubMed] [Google Scholar]
- Lo Cascio CM, Goetze O, Latshang TD, et al. Gastrointestinal dysfunction in patients with Duchenne muscular dystrophy. PLoS One 2016;11:e0163779. [PubMed] [Google Scholar]
- Anand A, Tyagi R, Mohanty M, et al. Dystrophin induced cognitive impairment: mechanisms, models and therapeutic strategies. Ann Neurosci 2015; 22 : 108–18. [CrossRef] [PubMed] [Google Scholar]
- Barboni MT, Martins CM, Nagy BV, et al. Dystrophin Is required for proper functioning of luminance and red-green cone opponent mechanisms in the human retina. Invest OphthalMol Vis Sci 2016; 57 : 3581–7. [CrossRef] [PubMed] [Google Scholar]
- Allen DG, Whitehead NP, Froehner SC. Absence of dystrophin disrupts skeletal muscle signaling : roles of Ca2+, reactive oxygen species, and nitric oxide in the development of muscular dystrophy. Physiol Rev 2016; 96: 253–305. [Google Scholar]
- Wicklund MP, Kissel JT. The limb-girdle muscular dystrophies. Neurol Clin 2014; 32 : 729–49. [CrossRef] [PubMed] [Google Scholar]
- Ghaoui R, Benavides T, Lek M, et al. TOR1AIP1 as a cause of cardiac failure and recessive limb-girdle muscular dystrophy. Neuromuscul Disord 2016; 26 : 500–3. [PubMed] [Google Scholar]
- El-Aloul B, Altamirano-Diaz L, Zapata-Aldana E, et al. Pharmacological therapy for the prevention and management of cardiomyopathy in Duchenne muscular dystrophy: a systematic review. Neuromuscul Disord 2017; 27 : 4–14. [PubMed] [Google Scholar]
- Rybalka E, Timpani CA, Stathis CG, et al. Metabogenic and nutriceutical approaches to address energy dysregulation and skeletal muscle wasting in Duchenne muscular dystrophy. Nutrients 2015; 7:9734–67. [CrossRef] [PubMed] [Google Scholar]
- Ballmann C, Denney TS, Beyers RJ, et al. Lifelong quercetin enrichment and cardioprotection in Mdx/Utrn+/- mice. Am J Physiol Heart Circ Physiol 2017; 312 : H128–40. [PubMed] [Google Scholar]
- Spaulding HR, Ballmann CG, Quindry JC, Selsby JT. Longterm quercetin dietary enrichment partially protects dystrophic skeletal muscle. PLoS One 2016; 11 : e0168293 [PubMed] [Google Scholar]
- Miyatake S, Shimizu-Motohashi Y, Takeda S, Aoki Y. Antiinflammatory drugs for Duchenne muscular dystrophy: focus on skeletal muscle-releasing factors. DrugDes Devel Ther 2016; 10 : 2745–58. [CrossRef] [Google Scholar]
- Reinig AM, Mirzaei S, Berlau DJ. Advances in the treatment of Duchenne muscular dystrophy: new and emerging pharmacotherapies. Pharmacotherapy 2017; 37 : 492–9. [PubMed] [Google Scholar]
- Zhou J, Xin J, Niu Y, Wu S. DMDtoolkit: a tool for visualizing the mutated dystrophin protein and predicting the clinical severity in DMD. BMC Bioinformatics 2017; 18 : 87–97. [CrossRef] [PubMed] [Google Scholar]
- Goemans N, Tulinius M, Kroksmark AK, et al. Comparison of ambulatory capacity and disease progression of Duchenne muscular dystrophy subjects enrolled in the drisapersen DMD114673 study with a matched natural history cohort of subjects on daily corticosteroids. Neuromuscul Disord 2017; 27 : 203–13. [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.